Abstract:
There is provided a manufacturing method for a thermal conductive layer, with which a thermal conductive layer having a thermal diffusivity of 3.0×10−7 m2s−1 or more is manufactured on a support by using a composition for forming a thermal conductive layer, the composition containing a resin, a filler, and a solvent and having a concentration of solid contents of less than 90% by mass, the manufacturing method including a discharge step of discharging the composition toward the support; and a solvent amount reduction step of reducing a solvent amount in the composition such that a first solvent amount reduction time taken after the composition is discharged until the concentration of solid contents in the composition reaches 90% by mass on the support is 10 seconds or more for each position on the support.
Abstract:
A near-infrared cut filter has a first infrared absorbing layer including an infrared absorber A, a second infrared absorbing layer including an infrared absorber C, and a resin layer disposed between the first infrared absorbing layer and the second infrared absorbing layer.
Abstract:
The present invention provides a composition kit which is suitably used for more convenient production of a bandpass filter with reduced angle dependence, a laminate and a method for producing the same, and a bandpass filter. The composition kit of the present invention includes a first composition containing a liquid crystal compound having a polymerizable group and a dextrorotatory chiral agent, a second composition containing a liquid crystal compound having a polymerizable group and a levorotatory chiral agent, and a third composition containing a color material.
Abstract:
Provided are an infrared-light-blocking composition capable of forming an infrared-light-blocking layer having excellent light-transmitting performance in the visible region and having excellent light-blocking performance in the infrared region; an infrared-light-blocking layer; an infrared cut-off filter; and a camera module. An infrared-light-blocking composition of the invention contains inorganic microparticles and a dispersing agent, and the infrared-light-blocking layer formed from the infrared-light-blocking composition has a transmittance at a wavelength of 1,000 nm of 60% or less, a transmittance at a wavelength of 1,100 nm of 50% or less, and a transmittance at a wavelength of 500 nm of 80% or more.
Abstract:
Provided are infrared absorbing compositions that allow for preparing infrared absorption patterns having good adhesiveness to substrates on which the infrared absorbing composition is applied. The infrared absorbing composition contains an infrared absorbing material, and a polymerizable compound containing a partial structure represented by formula (1) below: wherein R1 represents a hydrogen atom or an organic group; the asterisk (*) indicates a point of attachment to another atom.
Abstract:
A composition for forming a transparent resin layer of the present invention includes a polymerization initiator having a molar absorption coefficient (ε) at a wavelength of 365 nm of 1000 mol−1·L·cm−1 or less; a polymerizable compound; a polymer; and a solvent. The polymerization initiator is preferably at least one selected from the group consisting of an α-hydroxyacetophenone-based compound and a phosphine-based compound.
Abstract:
The invention provides a photosensitive resin composition that includes titanium black, a photopolymerizable compound, a resin A having an acid value of from 70 mgKOH/g to 250 mgKOH/g, a resin B having an acid value of from 26 mgKOH/g to 65 mgKOH/g, a photopolymerization initiator, and a solvent, the photopolymerization initiator including an oxime photopolymerization compound.
Abstract:
A polymerizable composition includes: a polymerization initiator; a polymerizable compound; a tungsten compound; and an alkali-soluble binder.
Abstract:
A film in which a light transmittance when light is transmitted from one surface of the film to the other surface has a maximum value of 10% or lower in a wavelength range of 400 to 830 nm and has a minimum value of 70% or higher in a wavelength range of 1000 to 1300 nm.
Abstract:
Provided are: a color filter for an image sensor in which an infrared filter having no particulate defects or the like can be laminated adjacent to an image pickup element and in which the total thickness of an image sensor can be significantly reduced; an image sensor including the color filter for an image sensor; and a method of manufacturing the color filter for an image sensor. The color filter for an image sensor includes: two or more absorbing color filters that absorb light components having different wavelength ranges; and a cholesteric reflecting layer in which a right circularly polarized light cholesteric layer having right circularly polarized light reflecting properties and a left circularly polarized light cholesteric layer having left circularly polarized light reflecting properties are laminated.