Abstract:
A terminal-equipped electric wire includes a terminal and a coated conductive wire, which are electrically connected to each other. A crimp part of the terminal is crimped to the coated conductive wire, and has a conductive wire crimp part, which is crimped to a conductive wire that is exposed from a coating on the front-end side of the coated conductive wire, and a coating crimp part, which is crimped to the coating of the coated conductive wire. On the front-end side (terminal body side) of the conductive wire crimp part, an electric wire holding part, which applies a relatively strong holding force on the conductive wire, is provided, On the rear-end side (coating crimp part side) of the conductive wire crimp part, a conductive part for achieving conduction with the conductive wire is formed.
Abstract:
An aluminum alloy conductor wire has a composition comprising Mg: 0.1-1.0 mass %, Si: 0.1-1.20 mass %, Fe: 0.01-1.40 mass %, Zr: 0.01-0.50 mass %, Ti: 0-0.100 mass %, B: 0-0.030 mass %, Cu: 0-1.00 mass %, Ag: 0-0.50 mass %, Au: 0-0.50 mass %, Mn: 0-1.00 mass %, Cr: 0-1.00 mass %, Hf: 0-0.50 mass %, V: 0-0.50 mass %, Sc: 0-0.50 mass %, Co: 0-0.50 mass %, Ni: 0-0.50 mass %, and the balance: AL and inevitable impurities, where Ti, B, Cu, Ag, Au, Mn, Cr, Hf, V, Sc, Co and Ni are arbitrary additive components of which at least one component may be contained or none of the components may be contained. A density of a compound having a particle size of 0.5-5.0 μm and containing Fe is 1 to 300 particles/10000 μm2. Mg/Si ratio, which is a ratio of Mg in mass % to Si in mass %, is greater than 1.
Abstract:
An aluminum alloy wire rod has a composition including 0.1-1.0 mass % Mg; 0.1-1.0 mass % Si; 0.01-1.40 mass % Fe; 0.000-0.100 mass % Ti; 0.000-0.030 mass % B; 0.00-1.00 mass % Cu; 0.00-0.50 mass % Ag; 0.00-0.50 mass % Au; 0.00-1.00 mass % Mn; 0.00-1.00 mass % Cr; 0.00-0.50 mass % Zr; 0.00-0.50 mass % Hf; 0.00-0.50 mass % V; 0.00-0.50 mass % Sc; 0.00-0.50 mass % Sn; 0.00-0.50 mass % Co; 0.00-0.50 mass % Ni; and the balance being Al and inevitable impurities, and an area fraction of a region in which an angle formed by a longitudinal direction of the aluminum alloy wire rod and a direction of a crystal is within 20° is greater than or equal to 20% and less than or equal to 65%.
Abstract:
A method of manufacturing a terminal comprising, in the following order, preparing a sheet material comprising 0.005 mass %-3.000 mass % in total of at least one element selected from Mg, Si, Cu, Zn, Mn, Ni, Cr and Zr, the balance being Al and incidental impurities, performing solution heat treatment by heating the sheet material, cold rolling the solution heat treated sheet material, forming a metal coating layer over a part of or an entirety of the cold-rolled sheet material, the metal coating layer being composed primarily of Sn, Cr, Cu, Zn, Au or Ag, or an alloy composed primarily thereof, forming a developed terminal material by punching the sheet material into a developed view geometry of a terminal, forming the developed terminal material into a terminal, and performing an aging treatment on the terminal at 150-190° C. for 60-600 minutes.
Abstract:
An aluminum alloy wire rod has a composition including Mg: 0.10-1.0 mass %, Si: 0.10-1.20 mass %, Fe: 0.01-1.40 mass %, Ti: 0.000- 0.100 mass %, B: 0.000-0.030 mass %, Cu: 0.00-1.00 mass %, Ag: 0.00-0.50 mass %, Au: 0.00-0.50 mass %, Mn: 0.00-1.00 mass %, Cr: 0.00-1.00 mass %, Zr: 0.00-0.50 mass %, Hf: 0.00-0.50 mass %, V: 0.00-0.50 mass %, Sc: 0.00-0.50 mass %, Co: 0.00-0.50 mass %, Ni: 0.00-0.50 mass %, and the balance: Al and incidental impurities, Mg/Si mass ratio being 0.4 to 0.8. The aluminum alloy wire rod has a tensile strength of greater than or equal to 200 MPa, an elongation of greater than or equal to 13%, a conductivity of 47% IACS, and a ratio (YS/TS) of 0.2% yield strength (YS) to the tensile strength (TS) of less than or equal to 0.7.
Abstract:
A terminal includes a tubular crimp portion that crimp connects with an electric wire. The tubular crimp portion is composed of a metal member. The tubular crimp portion includes a non-weld portion and a weld portion, the weld portion being formed by welding. A metal base material constituting the metal member of the non-weld portion includes a normal portion and an annealed portion.
Abstract:
An aluminum alloy wire rod has a composition consisting of 0.1-1.0 mass % Mg; 0.1-1.0 mass % Si; 0.01-1.40 mass % Fe; 0.000-0.100 mass % Ti; 0.000-0.030 mass % B; 0.00-1.00 mass % Cu; 0.00-0.50 mass % Ag; 0.00-0.50 mass % Au; 0.00-1.00 mass % Mn; 0.00-1.00 mass % Cr; 0.00-0.50 mass % Zr; 0.00-0.50 mass % Hf; 0.00-0.50 mass % V; 0.00-0.50 mass % Sc; 0.00-0.50 mass % Co; 0.00-0.50 mass % Ni; and the balance being Al and incidental impurities, wherein at least one or none of Ti, B, Cu, Ag, Au, Mn, Cr, Zr, Hf, V, Sc, Co and Ni is contained in the composition. A dispersion density of an Mg2Si compound having a particle size of 0.5 μm to 5.0 μm is less than or equal to 3.0×10−3 particles/μm2. Each of Si and Mg at a grain boundary between crystal grains of a parent phase has a concentration of less than or equal to 2.00 mass %.
Abstract:
A terminal includes a tubular crimp portion that crimp connects with an electric wire. The tubular crimp portion is composed of a metal member. The tubular crimp portion includes a non-weld portion and a weld portion, the weld portion being formed by welding. A metal base material constituting the metal member of the non-weld portion includes a normal portion and an annealed portion.
Abstract:
A copper alloy wire rod containing Ag: 0.5 wt % or more and 6 wt % or less and the balance including inevitable impurities and Cu, in which, on a cross section parallel to a longitudinal direction of the copper alloy wire rod, within a range observed with a visual field of 1.7 μm in a direction perpendicular to the longitudinal direction and 2.3 μm in a direction parallel to the longitudinal direction, the copper alloy wire rod has at least one rectangular range that is a rectangular range having a width perpendicular to the longitudinal direction of 0.2 μm and a length parallel to the longitudinal direction of 2.3 μm and entirely includes five or more second phase particles containing Ag and having a maximum length in the longitudinal direction of less than 300 nm.