摘要:
A semiconductor substrate is covered by a dielectric region. The dielectric region accommodates a memory element and a selection element forming a phase change memory cell. The memory element is formed by a resistive element and by a storage region of a phase change material extending on and in contact with the resistive element at a contact area. The selection element is formed by a switching region of chalcogenic material embedded in the dielectric region and belonging to a stack extending on the resistive element and including also the storage region. A mold region extends on top of the resistive element and delimits a trench having a substantially elongated shape. At least one portion of the storage region extends in the trench and defines a phase change memory portion over the contact area.
摘要:
A process for manufacturing a phase change memory array, includes the steps of: forming a plurality of PCM cells, arranged in rows and columns; and forming a plurality of resistive bit lines for connecting PCM cells arranged on a same column, each resistive bit lines comprising a respective phase change material portion, covered by a respective barrier portion. After forming the resistive bit lines, electrical connection structures for the resistive bit lines are formed directly in contact with the barrier portions of the resistive bit lines.
摘要:
The present invention proposes a Field Programmable Gate Array device comprising a plurality of configurable electrical connections, a plurality of controlled switches, each one adapted to activating/de-activating at least one respective electrical connection in response to a switch control signal and a control unit including an arrangement of a plurality of control cells. Each control cells controls at least one of said controlled switches by the respective switch control signal, each control cell including a volatile storage element adapted to storing in a volatile way a control logic value corresponding to a preselected status of the at least one controlled switch, and providing to the controlled switch said switch control signal corresponding to the stored logic value. Each control cell further includes a non-volatile storage element coupled to the volatile storage element, the non-volatile storage element being adapted to storing in a non-volatile way the control logic value.
摘要:
A memory device of a phase change type, wherein a memory cell has a memory element of calcogenic material switcheable between at least two phases associated with two different states of the memory cell. A write stage is connected to the memory cell and has a capacitive circuit configured to generate a discharge current having no constant portion and to cause the memory cell to change state.
摘要:
A memory cell design is disclosed. In an embodiment, the memory cell structure includes at least one memory bit layer stacked between top and bottom electrodes. The memory bit layer provides a storage element for a corresponding memory cell. One or more additional conductive layers may be included between the memory bit layer and either, or both, of the top or bottom electrodes to provide a better ohmic contact. In any case, a dielectric liner structure is provided on sidewalls of the memory bit layer. The liner structure includes a dielectric layer, and may also include a second dielectric layer on a first dielectric layer. Either or both first dielectric layer or second dielectric layer comprises a high-k dielectric material. As will be appreciated, the dielectric liner structure effectively protects the memory bit layer from lateral erosion and contamination during the etching of subsequent layers beneath the memory bit layer.
摘要:
Methods and structures provide horizontal conductive lines of fine pitch and self-aligned contacts extending from them, where the contacts have at least one dimension with a more relaxed pitch. Buried hard mask materials permit self-alignment of the lines and contacts without a critical mask, such as for word-line electrode lines and word-line contacts in a memory device.
摘要:
A phase change memory device with memory cells (2) formed by a phase change memory element (3) and a selection switch (4). A reference cell (2a) formed by an own phase change memory element (3) and an own selection switch (4) is associated to a group (7) of memory cells to be read. An electrical quantity of the group of memory cells is compared with an analogous electrical quantity of the reference cell, thereby compensating any drift in the properties of the memory cells.
摘要:
Some embodiments include methods of forming memory cells. A stack includes ovonic material over an electrically conductive region. The stack is patterned into rails that extend along a first direction. The rails are patterned into pillars. Electrically conductive lines are formed over the ovonic material. The electrically conductive lines extend along a second direction that intersects the first direction. The electrically conductive lines interconnect the pillars along the second direction. Some embodiments include a memory array having first electrically conductive lines extending along a first direction. The lines contain n-type doped regions of semiconductor material. Pillars are over the first conductive lines and contain mesas of the n-type doped regions together with p-type doped regions and ovonic material. Second electrically conductive lines are over the ovonic material and extend along a second direction that intersects the first direction. The second electrically conductive lines interconnect the pillars along the second direction.
摘要:
A fuse device has a fuse element provided with a first terminal and a second terminal and an electrically breakable region, which is arranged between the first terminal and the second terminal and is configured to undergo breaking as a result of the supply of a programming electrical quantity, thus electrically separating the first terminal from the second terminal. The electrically breakable region is of a phase-change material, in particular a chalcogenic material, for example GST.
摘要:
Resistance variable memory cells and methods are described herein. One or more methods of forming a resistance variable memory cell include forming a silicide material on a terminal of a select device associated with the resistance variable memory cell, forming a modified region of the silicide material by modifying a resistivity of a region of the silicide material, forming a conductive element on at least a portion of the modified region, and forming a resistance variable material on the conductive element.