Abstract:
The invention relates to a An aseptic connector comprising a first connection unit (102; 202; 302; 402; 502) provided with a first terminal end surface (104; 204; 304; 404; 504) and a second connection unit (106; 206; 306; 406; 506) provided with a second terminal end surface (108; 208; 308; 408; 508); said first and second terminal end surfaces are each provided with at least one first and second opening (110, 112; 210, 212; 310, 312; 410, 412; 510, 512), which openings are orientated to substantially coincide when said first and second connection units are connected to each other; said first and second openings are sealed by at least one film (114; 214; 314; 414; 514) arranged on said first and second connection units, so that the contact between the film and each connection unit is aseptic; said at least one film is adapted to be mated with a corresponding film on the other connection unit when said first and second connection units are connected to each other; and said mated films are adapted to be pulled out together two and two after mating such that corresponding first and second openings in said first and second terminal end surfaces are mated aseptically. At least two first ports (116; 216; 316; 416; 516) are arranged on the first connection unit, which first ports have fluid connection with the at least one first opening (110; 210; 310; 410; 510) in the first terminal end surface; and in that at least one second port (118; 218; 318; 418; 518) is arranged on the second connection unit, which the at least one second port has a fluid connection with the at least one second opening (112; 212; 312; 412; 512) in the second terminal end surface.
Abstract:
Methods, systems, and apparatus to monitor component status in a bioprocessing environment are disclosed and described. Certain examples provide a sensor device for a disposable bioprocessing component. The example sensor device includes a first portion affixed to the component, the first portion configured to provide an identifier associated with the component. The example sensor device also includes a second portion configured to provide a status indication based on a state of the component. The example sensor device is configured to transmit the identifier and status indication to a control computer associated with a bioproces sing platform including the component.
Abstract:
The invention discloses a connector (1) for substantially aseptic connection of tubing, comprising: a) a central tubular stem member (2) with a line connection end (3) and a coupling end (5) having an annular gasket (6) arranged to engage a similar annular gasket (26) on a similar second connector (21) in sealing abutment and; b) a tubular socket member (7), concentrically arranged outside the stem member, having a flange (8) concentrically arranged outside the coupling end and comprising a cover film (9) releasably bonded to the flange and covering the coupling end of the stem member, the annular gasket and at least a portion of the flange; wherein the socket member is rotatable around the stem member and wherein the connector further comprises an annular seal member (10) in sealing abutment between an inside (11) of the socket member and an outside (12) of the stem member.
Abstract:
The present invention relates to a device (1) for delivery of fluid, said device comprising at least two fluid ducts (12-17) of flexible material, each of which in one end can be connected to a fluid source and in the opposite end is connected to a manifold (18) having an inlet end and an outlet end, each of said fluid ducts (12-17) comprising a pinch valve (19) for closing and opening the duct. According to the invention a check valve (20) is disposed in at least one of said fluid ducts (12-17) in the end thereof connected to the manifold (18).
Abstract:
The invention discloses an immunoglobulin-binding magnetic bead, comprising a porous matrix and one or more magnetic particles embedded in said matrix, wherein said matrix comprises a porous polymer and at least 10 mg/ml Fc-binding proteinaceous ligands covalently coupled to said porous polymer.
Abstract:
The invention discloses a flexible bag assembly for cultivation of cells, comprising one or more bags forming a plurality of cultivation compartments, wherein a drain port in at least a first cultivation compartment is adapted to be fluidically connected with a second cultivation compartment upon opening of a valve means. It also discloses a bioreactor with the bag assembly mounted on a rocking tray and a method of cultivating cells in the assembly.
Abstract:
The invention relates to valve system for controlling a process fluid within a liquid processing system. The valve system comprises a valve arrangement, a pneumatic or hydraulic control system, and a connector unit. When the valve arrangement is connected to the connector unit, two or more valves are formed, such that the pneumatic or hydraulic control system controls an open/close or pressure control mode of the valves. A pump diaphragm system is disclosed, as well as a system for purifying a biological material that comprises the valve system or the pump diaphragm system. Also discloses are methods of using the valve system or the pump diaphragm system in a process for the purification of a biological material.
Abstract:
A chromatography column distribution system includes a set of first bed support ribs extending radially from an inner, first radial position near the center of the plate to an outer radial position nearer to the periphery of the plate and at least one set of intermediate bed support ribs starting at an intermediate radial position and extending to an outer radial position nearer to the periphery of the plate. Channels are formed between adjacent bed support ribs. The desired local effective channel height varies in accordance with a predetermined formula from the first radial position to the outer radial position. The transverse cross-sectional areas of the ribs or the channels are adapted such that the actual local effective channel height is within 15% of the desired local effective channel height over portions of the distribution system situated between the first radial position and the outer radial position. The length of the portions correspond to at least 80% of the distance between the first and outer radial position and the outer radial position.
Abstract:
A rigid housing comprising a bottom part and at least one wall part, said bottom part and said at least one wall part together defining an internal volume when the bottom part is provided below the at least one wall part in a processing position, said rigid housing being arranged for holding a flexible bag within the internal volume, wherein the bottom part is rotatable about an axis of rotation, wherein said axis of rotation is substantially parallel to a longitudinal axis of said rigid housing such that the bottom part can be provided in a loading position in which the bottom part has been rotated out from the position below the at least one wall part.
Abstract:
The present invention relates to a device (1) for delivery of fluid, said device comprising at least two fluid ducts (12-17) of flexible material, each of which in one end can be connected to a fluid source and in the opposite end is connected to a manifold (18) having an inlet end and an outlet end, each of said fluid ducts (12-17) comprising a pinch valve (19) for closing and opening the duct. According to the invention a check valve (20) is disposed in at least one of said fluid ducts (12-17) in the end thereof connected to the manifold (18).