Abstract:
The present disclosure relates to semiconductor devices and manufacturing techniques in which topography-related contact failures may be reduced by providing a dielectric fill material in a late manufacturing stage. In sophisticated semiconductor devices, the material loss in the trench isolation regions may result in significant contact failures, which may be reduced by levelling the device topography, thereby tolerating a significant lateral overlap of contact elements with trench isolation regions.
Abstract:
The present disclosure relates to semiconductor devices and manufacturing techniques in which topography-related contact failures may be reduced by providing a dielectric fill material in a late manufacturing stage. In sophisticated semiconductor devices, the material loss in the trench isolation regions may result in significant contact failures, which may be reduced by levelling the device topography, thereby tolerating a significant lateral overlap of contact elements with trench isolation regions.
Abstract:
A semiconductor device includes a semiconductor-on-insulator (SOI) wafer having a semiconductor substrate, a buried insulating layer positioned above the semiconductor substrate, and a semiconductor layer positioned above the buried insulating layer. A shallow trench isolation (STI) structure is positioned in the SOI wafer and separates a first region of the SOI wafer from a second region of the SOI wafer, wherein the semiconductor layer is not present above the buried insulating layer in the first region, and wherein the buried insulating layer and the semiconductor layer are not present in at least a first portion of the second region adjacent to the STI structure. A dielectric layer is positioned above the buried insulating layer in the first region, and a conductive layer is positioned above the dielectric layer in the first region.
Abstract:
The present disclosure provides a test structure which includes an SOI substrate having an active semiconductor layer, a buried insulating material layer, and a base substrate, wherein the active semiconductor layer is formed on the buried insulating material layer, which, in turn, is formed on the base substrate. The test structure further includes a contact which is formed on the active semiconductor layer and electrically coupled to the active semiconductor layer. Herein, the contact has a tip portion extending through the active semiconductor layer into the buried insulating material layer.
Abstract:
The present disclosure provides a test structure which includes an SOI substrate having an active semiconductor layer, a buried insulating material layer, and a base substrate, wherein the active semiconductor layer is formed on the buried insulating material layer, which, in turn, is formed on the base substrate. The test structure further includes a contact which is formed on the active semiconductor layer and electrically coupled to the active semiconductor layer. Herein, the contact has a tip portion extending through the active semiconductor layer into the buried insulating material layer.
Abstract:
A semiconductor device with a metal-containing layer, a first semiconductor layer, that is formed on top of the metal-containing layer, and a resistor that is formed in the metal-containing layer and that is contacted through the first semiconductor layer is provided. Furthermore, a method of manufacturing a semiconductor device is provided, wherein the method comprises manufacturing of a resistor with the following steps: formation of a metal-containing layer over a wafer, particularly a SOI wafer, formation of a first semiconductor layer on top of the metal-containing layer and formation of a contact through the semiconductor layer to the metal-containing layer.
Abstract:
A method of manufacturing a semiconductor device is provided including forming a gate electrode layer over a semiconductor substrate, forming a sidewall spacer at a sidewall of the gate electrode layer, forming a raised source/drain region over the semiconductor substrate and adjacent to the sidewall spacer, removing a portion of the sidewall spacer, thereby exposing a portion of the sidewall of the gate electrode layer, and forming an electrically conductive layer electrically connecting the exposed portion of the sidewall of the gate electrode layer and the source/drain region.
Abstract:
A semiconductor device with a metal-containing layer, a first semiconductor layer, that is formed on top of the metal-containing layer, and a resistor that is formed in the metal-containing layer and that is contacted through the first semiconductor layer is provided. Furthermore, a method of manufacturing a semiconductor device is provided, wherein the method comprises manufacturing of a resistor with the following steps: formation of a metal-containing layer over a wafer, particularly a SOI wafer, formation of a first semiconductor layer on top of the metal-containing layer and formation of a contact through the semiconductor layer to the metal-containing layer.
Abstract:
The present disclosure provides a semiconductor device including an SOI substrate comprising an active semiconductor layer disposed on a buried insulating material layer, which is in turn formed on a base semiconductor material. The semiconductor device further includes a gate structure formed on the active semiconductor layer, source/drain regions provided at opposing sides of the gate structure, and a contact structure having contact elements for contacting the source/drain regions. Herein, the contact elements are disposed at opposing sides of the gate structure and are in alignment therewith. Furthermore, one of the contact elements extends through the buried insulating material layer and is in electrical contact with the base semiconductor material.
Abstract:
The present disclosure provides in some aspects a semiconductor device and a method of forming a semiconductor device. According to some illustrative embodiments herein, the semiconductor device includes an active region formed in a semiconductor substrate, a gate structure disposed over the active region, source/drain regions formed in the active region in alignment with the gate structure, and an insulating material region buried into the active region under the gate structure, wherein the insulating material region is surrounded by the active region and borders a channel region in the active region below the gate structure along a depth direction of the active region.