Abstract:
Field-effect transistor structures for a laterally-diffused metal-oxide-semiconductor (LDMOS) device and methods of forming a LDMOS device. First and second fins are formed that extend vertically from a top surface of a substrate. A body region is arranged partially in the substrate and partially in the first fin. A drain region is arranged partially in the substrate, partially in the first fin, and partially in the second fin. The body and drain regions respectively have opposite first and second conductivity types. A source region of the second conductivity type is located within the first well in the first fin, and a gate structure is arranged to overlap with a portion of the first fin. The first fin is separated from the second fin by a cut extending vertically to the top surface of the substrate. An isolation region is arranged in the cut between the first fin and the second fin.
Abstract:
A vertical SRAM cell includes a first (1st) inverter having a 1st pull-up (PU) transistor and a 1st pull-down (PD) transistor. The 1st PU and 1st PD transistors have a bottom source/drain (S/D) region disposed on a substrate and a channel extending upwards from a top surface of the bottom S/D region. A second (2nd) inverter has a 2nd PU transistor and a 2nd PD transistor. The 2nd PU and 2nd PD transistors have a bottom S/D region disposed on the substrate and a channel extending upwards from a top surface of the bottom S/D region. A 1st metal contact is disposed on sidewalls, and not on the top surface, of the bottom S/D regions of the 1st PU and 1st PD transistors. A 2nd metal contact is disposed on sidewalls, and not on the top surface, of the bottom S/D regions of the 2nd PU and 2nd PD transistors.
Abstract:
Disclosed is a structure wherein lower source/drain regions of vertical field effect transistors (VFETs) of memory cells in a memory array are aligned above and electrically connected to buried bitlines. Each cell includes a VFET with a lower source/drain region, an upper source/drain region and at least one channel region extending vertically between the source/drain regions. The lower source/drain region is above and immediately adjacent to a buried bitline, which has the same or a narrower width than the lower source/drain region and which includes a pair of bitline sections and a semiconductor region positioned laterally between the sections. The semiconductor region is made of a different semiconductor material than the lower source/drain region. Also disclosed is a method that ensures that bitlines of a desired critical dimension can be achieved and that allows for size scaling of the memory array with minimal bitline coupling.
Abstract:
A semiconductor structure includes a substrate. A gate structure is disposed over the substrate. The gate structure includes: a pair of gate spacers extending generally vertically from the substrate, gate metal disposed between the spacers, and a self-aligned contact (SAC) cap disposed over the gate metal to form a top of the gate structure. A first capacitor plate is disposed directly upon the SAC cap such that no additional layer is disposed between the resistor and SAC cap. An insulator layer and a second capacitor plate are disposed on the first capacitor plate forming a MIM capacitor. A pair of capacitor plate contacts are electrically connected to the first capacitor plate and the second capacitor plate.
Abstract:
A method of forming a single diffusion break includes etching rows of fins into a substrate of a structure from a patterned fin hardmask, the remaining fin hardmask being self-aligned with the fins. A first dielectric fill material is disposed and planarized over the structure to expose the fin hardmask. A photoresist layer is disposed over the structure. An isolation region is patterned across the fins to form first and second parallel fin arrays, wherein any remaining photoresist layer has self-aligned edges which are self-aligned with the isolation region. The self-aligned edges are trimmed to expose end portions of the fin hardmask. The exposed end portions are removed. The remaining photoresist layer is removed. A second dielectric fill material is disposed and planarized over the structure to form a base for a single diffusion break (SDB) in the isolation region.
Abstract:
One illustrative device includes a source region and a drain region formed in a substrate, wherein the source/drain regions are doped with a first type of dopant material, a gate structure positioned above the substrate that is laterally positioned between the source region and the drain region and a drain-side well region positioned in the substrate under a portion, but not all, of the entire lateral width of the drain region, wherein the drain-side well region is also doped with the first type of dopant material. The device also includes a source-side well region positioned in the substrate under an entire width of the source region and under a portion, but not all, of the drain region and a part of the extension portion of the drain region is positioned under a portion of the gate structure.
Abstract:
One method disclosed herein includes performing at least one common process operation to form a plurality of first gate structures for each of a plurality of field effect transistors and a plurality of second gate structures above a region where a bipolar transistor will be formed and performing an ion implantation process and a heating process to form a continuous doped emitter region that extends under all of the second gate structures. A device disclosed herein includes a first plurality of field effect transistors with first gate structures, a bipolar transistor that has an emitter region and a plurality of second gate structures positioned above the emitter region, wherein the bipolar transistor comprises a continuous doped emitter region that extends laterally under all of the plurality of second gate structures.
Abstract:
Embodiments disclosed describe approaches for providing a local interconnection between a protection diode and a gate transistor in an integrated circuit (IC) device. Specifically, described is an IC device comprising: a protection diode formed in a substrate, a replacement metal gate (RMG) transistor formed over the substrate, a first contact formed over the protection diode (and optional trench silicide layer), a second contact formed over the RMG transistor, wherein the first contact extends to connect directly with the second contact, and a top metal layer (M1) formed over the first contact and the second contact. By extending the first contact from the protection diode directly to the gate transistor as a supplemental interconnect, any charges accumulated during formation of the second contact and the set of vias will be discharged by the protection diode.
Abstract:
One illustrative device disclosed herein includes a transistor comprising a gate electrode and a drain region formed in a semiconducting substrate, an isolation structure formed in the substrate, wherein the isolation structure is laterally positioned between the gate electrode and the drain region, and a Faraday shield that is positioned laterally between the gate electrode and the drain region and above the isolation structure, wherein the Faraday shield has a long axis that is oriented substantially vertically relative to an upper surface of the substrate.
Abstract:
Disclosed is a structure wherein lower source/drain regions of vertical field effect transistors (VFETs) of memory cells in a memory array are aligned above and electrically connected to buried bitlines. Each cell includes a VFET with a lower source/drain region, an upper source/drain region and at least one channel region extending vertically between the source/drain regions. The lower source/drain region is above and immediately adjacent to a buried bitline, which has the same or a narrower width than the lower source/drain region and which includes a pair of bitline sections and a semiconductor region positioned laterally between the sections. The semiconductor region is made of a different semiconductor material than the lower source/drain region. Also disclosed is a method that ensures that bitlines of a desired critical dimension can be achieved and that allows for size scaling of the memory array with minimal bitline coupling.