Abstract:
There is set forth herein a field effect transistor (FET) configured as an ESD protection device. In one embodiment, the FET can be configured to operate in a snapback operating mode. The FET can include a semiconductor substrate, a gate formed on the substrate and a dummy gate formed on the substrate spaced apart from the gate.
Abstract:
Integrated circuits having resistor structures formed from a MIM capacitor material and methods for fabricating such integrated circuits are provided. In an embodiment, a method for fabricating an integrated circuit includes providing a semiconductor substrate with a resistor area and a capacitor area. The method includes depositing a capacitor material over the resistor area and the capacitor area of the semiconductor substrate. The method also includes forming a resistor structure from the capacitor material in the resistor area. Further, the method includes forming electrical connections to the resistor structure in the resistor area.
Abstract:
Embodiments of the present invention provide an improved decoupling capacitor structure. A contact region is disposed over a source/drain region of the decoupling capacitor structure. Each contact region is formed as a plurality of segments, wherein an inter-segment gap separates a segment of the plurality of segments from an adjacent segment of the plurality of segments. Embodiments may include multiple contact regions between two gate regions. Arrays of decoupling capacitors may arranged as an alternating “checkerboard” pattern of P-well and N-well structures, and may be oriented at a diagonal angle to a metallization layer to facilitate connections of multiple decoupling capacitors within the array.
Abstract:
A fin of a FinFET, being p or n-type, includes a well encompassing the active region, the well being of the opposite type than the fin. An implant of the same type as the well is provided for the well tap at an edge of the active region. A dummy gate material on the fin between the source/drain and the well tap implant reduces an inherent resistance of a well tap contact.
Abstract:
Three-dimensional electrostatic discharge (ESD) semiconductor devices are fabricated together with three-dimensional non-ESD semiconductor devices. For example, an ESD diode and FinFET are fabricated on the same bulk semiconductor substrate. A spacer merger technique is used in the ESD portion of a substrate to create double-width fins on which the ESD devices can be made larger to handle more current.
Abstract:
The present disclosure relates to semiconductor structures and, more particularly, to high voltage diode structures and methods of manufacture. The structure includes: a diode structure composed of first well of a first dopant type in a substrate; and a well ring structure of the first dopant type in the substrate which completely surrounds the first well of the first dopant type, and spaced a distance “x” from the first well to cut a leakage path to a shallower second well of a second dopant type.
Abstract:
Semiconductor structures and methods of forming semiconductor structures. Trench isolation regions arranged to surround an active device region The trench isolation regions extend through a device layer and a buried oxide layer of a silicon-on-insulator wafer into a substrate of the silicon-on-insulator wafer. A well is arranged in the substrate outside of the trench isolation regions, and a doped region is arranged in a portion of the substrate. The doped region is arranged in a portion of the substrate that is located in a horizontal direction adjacent to one of the trench isolation regions and in a vertical direction adjacent to the buried oxide layer. The doped region and the well have the same conductivity type.
Abstract:
Structures for switches and methods for forming structures that include a switch. A first well and a section well are arranged in a substrate. Trench isolation regions are arranged in the substrate to define multiple active device regions. Each of the active device regions includes a section of the first well that is surrounded by the trench isolation regions. The second well has an opposite conductivity type from the first well. The active device regions and the trench isolation regions are arranged between the top surface of the substrate and the second well, and the second well is contiguous with the trench isolation regions.
Abstract:
An LDFET may be formed on the basis of manufacturing platforms designed for forming sophisticated small signal transistor elements. To this end, sidewall areas of trench isolation regions laterally positioned within the drift region may be used as current paths, thereby achieving increased design flexibility, since efficient current paths may still be established, even if the trench isolation regions have to extend into the substrate material due to design criteria determined by the sophisticated small signal transistor elements. In some illustrative embodiments, isolation of P-LDFETs with respect to the P-substrate may be accomplished without requiring a deep well implantation.
Abstract:
One illustrative method disclosed herein includes, among other things, forming a sacrificial sidewall spacer adjacent a sidewall spacer of a transistor and, with the sacrificial sidewall spacer in position, forming openings in an active layer of an SOI substrate adjacent the sacrificial sidewall spacer so as to thereby expose portions of a buried insulation layer of the SOI substrate. In this example, the method also includes performing an isotropic etching process to form recesses of any shape in the buried insulation layer, wherein the recesses extend laterally under a portion of the active layer, and forming an epi semiconductor material in at least the recesses in the buried insulation layer.