Abstract:
A cobalt contact includes a dual silicide barrier layer. The barrier layer, which may be formed in situ, includes silicides of titanium and cobalt, and provides an effective adhesion layer between the cobalt contact and a conductive device region such as the source/drain junction of a semiconductor device, eliminating void formation during a metal anneal.
Abstract:
Various embodiments include methods and integrated circuit structures. In some cases, a method of forming an integrated circuit structure can include: forming an opening in a low-k dielectric layer; filling the opening with a high-k dielectric material; patterning the low-k dielectric layer outside of the opening and the high-k dielectric layer to form an interconnect opening within the low-k dielectric layer and a capacitor opening within the high-k dielectric layer; and filling the interconnect opening and the capacitor opening with a metal to form an interconnect in the low-k dielectric layer and a capacitor in the high-k dielectric layer.
Abstract:
Aspects of the present disclosure include a method for forming a contact on a semiconductor device, the semiconductor device including a conductive region disposed over a substrate, the method comprising: depositing a dielectric material on the substrate; forming an opening in the dielectric material to expose the conductive region; forming a barrier layer on a lower surface and sidewalls of the opening in the dielectric material, the barrier layer terminating below an upper surface of the dielectric material and surrounding a lower portion of the opening; depositing cobalt in the lower portion of the opening, the cobalt terminating at an upper surface of the barrier layer; depositing tungsten to fill the opening to at least the upper surface of the dielectric material; and planarizing the upper surface of the dielectric material with the tungsten in the opening.
Abstract:
Structures for a liner replacement in an interconnect structure and methods for forming a liner replacement in an interconnect structure. A metallization level is formed that includes a conductive feature. A dielectric layer is formed on the metallization level. The dielectric layer includes an opening that extends vertically through the dielectric layer to the conductive feature. An adhesion layer is formed on area of the conductive feature exposed at a base of the opening. The adhesion layer has a thickness equal to a monolayer or a fraction of a monolayer. Another layer (e.g., barrier layer) of a different composition (e.g., TiN) may be deposited on the adhesion layer before the opening is filled with metal deposited by chemical vapor deposition.
Abstract:
Multiple gate stack portions are formed in a gate cavity by direct metal gate patterning to provide FinFETs having different threshold voltages. The different threshold voltages are obtained by selectively incorporating metal layers with different work functions in different gate stack portions.
Abstract:
Semiconductor devices and methods are provided for integrally forming electromechanical devices (e.g. MEMS or NEMS devices) with CMOS devices in a FEOL (front-end-of-line) structure as part of a replacement metal gate process flow. For example, a method includes forming an electromechanical device in a first device region of a substrate and forming a transistor device in a second device region of the substrate. The electromechanical device includes a sacrificial anchor structure and a sacrificial cantilever structure formed of a sacrificial material. The transistor device includes a sacrificial gate electrode structure formed of the sacrificial material. A replacement metal gate process is performed to replace the sacrificial gate electrode structure of the transistor device with a metallic gate electrode, and to replace the sacrificial anchor structure and the sacrificial cantilever structure with a metallic anchor structure and a metallic cantilever structure. A release process is performed to release the metallic cantilever structure.