Abstract:
In an exemplary embodiment, a method for determining a route using route segment characterizations is disclosed. The method includes receiving, by a processor, a destination. The method further includes determining, by the processor, one or more routes to the destination from a first location. The method further includes dividing, by the processor, each of the one or more routes into one or more route segments. The method further includes characterizing, by the processor, each of the one or more route segments according to propulsion resources available to a vehicle. The method further includes providing, by the processor, an optimized route from the one or more routes based on the characterization of the one or more route segments.
Abstract:
A method for controlling a powertrain of a vehicle includes calculating, via a controller, an optimal torque target for the powertrain as a function of system limits of the vehicle. The method includes commanding, via transmission of an output torque signal, an actual output torque of the powertrain to pursue or follow the calculated optimal torque target during a steady-state torque request condition. Additionally, the method includes detecting a predetermined vehicle event during the steady-state torque request condition, and shaping the output torque signal via the controller. A variable gain factor may be used in response to detection of the predetermined vehicle event to allow the output torque signal to temporarily deviate from the calculated optimal torque target during the steady-state torque request condition. A powertrain has an engine, an electric machine, and a controller programmed to execute the method.
Abstract:
A powertrain system for a vehicle is described, and includes an internal combustion engine mechanically coupled to an electric machine to generate propulsion torque and electric power storable on an energy storage device. A method for controlling the powertrain system includes determining a first desired powertrain output power associated with a road load and determining a second desired powertrain output power associated with a feed-forward state-of-charge (SOC) for the energy storage device. The internal combustion engine and the electric machine are controlled responsive to the first and second desired powertrain output powers.
Abstract:
A method of managing an operating state of an electrified powertrain includes a controller identifying a plurality of available operating regions defined by at least one available operating state of the powertrain, each operating region representing a distinct range of operating conditions. The available operating regions include an avoidance region defining a plurality of unwanted operating conditions and separating a first allowable operating region from a second allowable operating region such that the first and second allowable operating regions are noncontiguous. The method identifies at least one ideal operating condition in each of the available operating regions, determines a preferability factor and stabilization factor for each of a current and each of the ideal operating conditions, and arbitrates the factors to identify one of the current and ideal operating conditions as an optimized operating condition to produce a required parameter value.
Abstract:
A vehicle system includes an electric motor, an internal combustion engine, and a heating system configured to transfer heat from the internal combustion engine to a passenger compartment of the vehicle. The system includes a controller configured to operate the electric motor and the internal combustion engine according to one of a plurality of drive cycle profiles. The controller selects the drive cycle profile based on an ambient temperature. The drive cycle profiles include a first drive cycle profile that commands power from the electric motor until the battery system reaches a predetermined state of charge and subsequently commands power from the internal combustion engine and a second drive cycle profile that commands power from the internal combustion engine and subsequently commands power from the electric motor.
Abstract:
A powertrain system for a vehicle is described, and includes an internal combustion engine mechanically coupled to an electric machine to generate propulsion torque and electric power storable on an energy storage device. A method for controlling the powertrain system includes determining a first desired powertrain output power associated with a road load and determining a second desired powertrain output power associated with a feed-forward state-of-charge (SOC) for the energy storage device. The internal combustion engine and the electric machine are controlled responsive to the first and second desired powertrain output powers.
Abstract:
A method to control a hybrid powertrain including an engine, an electric machine, and a transmission through a transition from an initial operating point to a target operating point includes monitoring a break point in a non-convex data set defined by an engine torque below which a growl condition cannot occur and a threshold low motor torque required for the grown condition, comparing the target operating point to the break point, and controlling the powertrain based upon the target operating point and the comparing.
Abstract:
A method of managing available operating states in an electrified powertrain includes: identifying a plurality of operating states; determining an allowable hardware operating speed range for each of the plurality of operating states; determining a real operating speed range for each of the plurality of operating states; determining an ideal operating speed range for each of the plurality of operating states, the ideal operating speed range being a subset of the allowable real operating speed range; indicating an operating state of the plurality of operating states as ideal-allowed if an actual output speed of the electrified powertrain is within the ideal operating speed range for that operating state; and commanding the electrified powertrain to operate within one of the operating states that is indicated as ideal-allowed.
Abstract:
A powertrain system includes an internal combustion engine, a multi-mode transmission, torque machines, and a driveline. A method for operating the powertrain system to transfer torque among the engine, torque machine, and driveline includes controlling operation of the powertrain system in a pseudo-gear range in response to an output torque request including operating the transmission in a variable mode transmission range and controlling a magnitude of torque output to the driveline in response to an output torque request and in proportion to a magnitude of input torque from the engine.
Abstract:
A method and a system for a high-voltage (HV) battery pack having multiple rechargeable energy storage devices (RESSs) that are connectable to an external load via a power bus via a pre-charge circuit in parallel with a first electrical contactor. The RESSs are monitored via current sensors. The current sensors monitor current levels between the RESSs and the power bus, detect a low current level from one of the current sensors, identify one of the RESSs associated with the low current level, activate the respective pre-charge circuit, monitor the electrical current, and determine a state of the respective first electrical contactor based upon the electrical current.