Abstract:
The present invention relates to zeolitic adsorbents based on agglomerated crystals of FAU zeolite comprising barium and/or potassium, with large external surface area, combining optimum properties in terms of selectivity and mechanical strength.These adsorbents find applications in the separation of cuts of C8-aromatic isomers and notably of xylenes, in the separation of isomers of substituted toluene such as nitrotoluene, diethyltoluene, toluenediamine, in the separation of cresols, and polyhydric alcohols, such as sugars.
Abstract:
The present invention describes a process for the separation of xylenes in simulated counter-current utilising at least one adsorber with a limited cumulated total height (Hcu) of adsorbent and a superficial velocity (Vsl) of less than 2 cm/s.
Abstract:
The invention relates to a process for the hydrodesulfurization of a sulfur-containing olefinic gasoline cut in which said gasoline cut, hydrogen and a regenerated catalyst are brought into contact, said process being carried out at a temperature of between 200° C. and 400° C., a total pressure of between 1 and 3 MPa, an hourly space velocity, defined as being the flow rate by volume of feedstock relative to the volume of catalyst, of between 1 and 10 h−1; and a hydrogen/gasoline feedstock ratio by volume of between 100 and 1200 SI/I, said regenerated catalyst resulting from an at least partially spent catalyst resulting from a process for the hydrodesulfurization of a sulfur-containing olefinic gasoline cut and comprises at least one metal from group VIII, at least one metal from group VIb and an oxide support.
Abstract:
The invention relates to a process for the hydrodesulfurization of a sulfur-containing olefinic gasoline cut in which said gasoline cut, hydrogen and a rejuvenated catalyst are brought into contact, said hydrodesulfurization process being carried out at a temperature of between 200° C. and 400° C., a total pressure of between 1 and 3 MPa, an hourly space velocity, defined as being the flow rate by volume of feedstock relative to the volume of catalyst, of between 1 and 10 h−1 and a hydrogen/gasoline feedstock ratio by volume of between 100 and 1200 Sl/l, said rejuvenated catalyst resulting from a hydrotreating process and comprises at least one metal from group VIII, at least one metal from group VIb, an oxide support and at least one organic compound containing oxygen and/or nitrogen and/or sulfur.
Abstract:
The present invention relates to a hydrotreating catalyst comprising at least one group VIB metal, at least one group VIII metal and an alumina support having a gamma alumina content greater than 50% by weight and less than 100% by weight with respect to the weight of the support, said support having a specific surface area comprised between 25 and 150 m2/g.
Abstract:
A process for the desulphurization of a gasoline cut containing sulphur-containing compounds, olefins and diolefins, involving (a) fractionating the gasoline in order to recover a light gasoline cut LCN and a first heavy gasoline cut HCN; (b) desulphurization of the first heavy gasoline cut HCN; (c) partially condensing desulphurization effluent obtained from b) in a manner such as to produce a gaseous phase of hydrogen and H2S and a liquid hydrocarbon phase HCN of dissolved H2S; (d) separating the liquid hydrocarbon phase HCN into an intermediate gasoline cut MCN and a second heavy gasoline cut HHCN; (e) carrying out a second desulphurization of the second heavy gasoline cut HHCN.
Abstract:
The present invention relates to zeolitic adsorbents based on agglomerated crystals of FAU zeolite containing barium and/or potassium, with large external surface area, combining optimum properties in terms of selectivity and mechanical strength. These adsorbents find applications in the separation of cuts of C8-aromatic isomers and notably of xylenes, in the separation of isomers of substituted toluene such as nitrotoluene, diethyltoluene, toluenediamine, in the separation of cresols, and in the separation of polyhydric alcohols such as sugars.
Abstract:
The invention relates to a method for separating meta-xylene from C8 aromatic fractions, using a zeolitic adsorbent based on sodium-exchanged or sodium-and-lithium-exchanged agglomerated crystals of zeolite Y, with a large external surface area.
Abstract:
This invention relates to a process for treatment of a gasoline comprising diolefins, olefins, and sulfur-containing compounds including mercaptans, in which: Gasoline is injected into a distillation column comprising at least one reaction zone to produce a desulfurized light gasoline; with the process also comprising the following stages: An intermediate gasoline fraction is drawn off at a level located above the reaction zone; A heavy gasoline comprising the majority of the sulfur-containing compounds is drawn off at the bottom of the column; In a demercaptization reactor, said intermediate gasoline fraction is brought into contact with a second catalyst to produce an effluent that contains sulfides; The effluent that is obtained from the demercaptization reactor is recycled in the distillation column (3).
Abstract:
The present invention concerns a method for processing a petrol containing sulfur and olefin compounds, comprising the following steps: a) a step of hydrodesulfurisation in the presence of a catalyst comprising an oxide support and an active phase comprising a metal from group VIB and a metal from group VIII, b) a step of separating the H2S formed, c) a step of hydrodesulfurisation at a higher temperature than that of step a), with a hydrogen/feedstock ratio less than that of step a), and in the presence of a hydrodesulfurisation catalyst comprising an oxide support and an active phase consisting of at least one metal from group VIII, d) a step of separating the H2S formed.