Abstract:
Apparatuses and methods including an apparatus for an electronics package are disclosed. According to one embodiment, the apparatus can include one or more magnetic inductors, one or more capacitors positioned one of above or below to the one or more magnetic inductors and a plurality of electrical conductors comprising pillars. The pillars can extend substantially vertically to electrically connect the one or more magnetic inductors and the one or more capacitors to the electronics package and the one or more magnetic inductors, the one or more capacitors and the plurality of conductors are disposed one of above or below the electronics package; and at least one electrical conductor comprising a pillar extending substantially vertically to electrically connect the one or more magnetic inductors and the one or more capacitors.
Abstract:
Embodiments include apparatuses, methods, and systems with cross-coupling noise reduction in circuits. In embodiments, a circuit may include a common inductor and a negatively coupled inductor pair connected or coupled between the first inductor and a first load and a second load. The negatively coupled inductor pair may include a first and a second inductor. The first inductor may be connected or coupled to the first load and the second inductor may be connected or coupled to the second load to reduce cross-coupling noise between the first load and the second load. Examples of passive structures that may be used to implement the circuit are also described. Other embodiments may also be described and claimed.
Abstract:
Methods and apparatus relating to capacitor interconnections and/or volume re-capture for voltage noise reduction are described. In an embodiment, an interconnection capacitor is coupled to voltage regulator logic. The interconnection capacitor provides substrate decoupling for a plurality of loads. Other embodiments are also disclosed and claimed.
Abstract:
An apparatus, system, and method for improved power consumption and/or noise reduction in a differential input/output (I/O) buffer are provided. A circuit can include a differential signal buffer and encoding scheme quantifying and selection circuitry. The encoding scheme quantifying and selection circuitry can be configured to generate a selection code indicating a selected encoding scheme of the encoding schemes based on respective signals indicating whether each respective encoding scheme of encoding schemes has a net positive power consumption reduction in differential signals. The encoding scheme quantifying and selection circuitry can be configured to provide the selection code to an encoder.
Abstract:
Embodiments disclosed herein include electronic packages and their components. In an embodiment, an electronic package comprises a package substrate and a base die over the package substrate. In an embodiment, the electronic package further comprises a plurality of chiplets over the base die. In an embodiment, the base die comprises a substrate, a first metal layer and a second metal layer between the substrate and the plurality of chiplets, and a third metal layer and a fourth metal layer between the package substrate and the substrate. In an embodiment, a filter is integrated into one or more layers of the base die.
Abstract:
According to various examples, a stacked semiconductor package is described. The stacked semiconductor package may include a package substrate. The stacked semiconductor package may also include a base die disposed on and electrically coupled to the package substrate. The stacked semiconductor package may further include a mold portion disposed on the package substrate at a periphery of the base die, the mold portion may include a through-mold interconnect electrically coupled to the package substrate. The stacked semiconductor package may further include a semiconductor device having a first section disposed on the base die and a second section disposed on the mold portion, wherein the second section of the semiconductor device may be electrically coupled to the package substrate through the through-mold interconnect.
Abstract:
A power supply architecture combines the benefits of a traditional single stage power delivery, when there are no additional power losses in the integrated VR with low VID and low CPU losses of FIVR (fully integrated voltage regulator) and D-LVR (digital linear voltage regulator). The D-LVR is not in series with the main power flow, but in parallel. By placing the digital-LVR in parallel to a primary VR (e.g., motherboard VR), the CPU VID is lowered and the processor core power consumption is lowered. The power supply architecture reduces the guard band for input power supply level, thereby reducing the overall power consumption because the motherboard VR specifications can be relaxed, saving cost and power. The power supply architecture drastically increases the CPU performance at a small extra cost for the silicon and low complexity of tuning.
Abstract:
An apparatus is provided which comprises: a first voltage regulator; a second voltage regulator; and a switch to selectively couple the first voltage regulator to the second voltage regulator, such that a first output node of the first voltage regulator is temporarily coupled to a second output node of the second voltage regulator via the switch.
Abstract:
Particular embodiments described herein provide for an electronic device that can be configured to include a plurality of chiplets, a plurality of resources, a system thermal engine, and at least one processor. The at least one processor is configured to cause the system thermal engine to monitor the plurality of chiplets, where the plurality of chiplets are part of a multi-chip module, determine that a first chiplet from the plurality of chiplets has reached a threshold temperature, and reduce power to the first chiplet without reducing power to the other chiplets in the plurality of chiplets.
Abstract:
Microelectronic assemblies, related devices, and methods are disclosed herein. In some embodiments, a microelectronic assembly may include a package substrate; a bridge, embedded in the package substrate, wherein the bridge includes an integral passive component, and wherein a surface of the bridge include first contacts in a first interconnect area and second contacts in a second interconnect area; a first die coupled to the passive component via the first contacts in the first interconnect area; and a second die coupled to the second contacts in the second interconnect area.