摘要:
The present invention provides an in vitro blood vessel model for investigation of drug induced vascular injury and other vascular pathologies. The in vitro blood vessel model provides two channels separated by a porous membrane that is coated on one side by an endothelial cell layer and is coated on the other side by a smooth muscle cell layer, wherein said model is susceptible to the extravasation of red blood cells across said porous membrane due to drug induced vascular injury.
摘要:
The invention provides method of fabricating a scaffold comprising a fluidic network, including the steps of: (a) generating an initial vascular layer for enclosing the chamber and providing fluid to the cells, the initial vascular layer having a network of channels for fluid; (b) translating the initial vascular layer into a model for fluid dynamics analysis; (c) analyzing the initial vascular layer based on desired parameters selected from the group consisting of a characteristic of a specific fluid, an input pressure, an output pressure, an overall flow rate and combinations thereof to determine sheer stress and velocity within the network of channels; (d) measuring the sheer stress and the velocity and comparing the obtained values to predetermined values; (e) determining if either of the shear stress or the velocity are greater than or less than the predetermined values, and (f) optionally modifying the initial vascular layer and repeating steps (b)-(e). The invention also provides compositions comprising a vascular layer for use in tissue lamina as well as a medical devices having a vascular layer and kits.
摘要:
The invention provides method of fabricating a scaffold comprising a fluidic network, including the steps of: (a) generating an initial vascular layer for enclosing the chamber and providing fluid to the cells, the initial vascular layer having a network of channels for fluid; (b) translating the initial vascular layer into a model for fluid dynamics analysis; (c) analyzing the initial vascular layer based on desired parameters selected from the group consisting of a characteristic of a specific fluid, an input pressure, an output pressure, an overall flow rate and combinations thereof to determine sheer stress and velocity within the network of channels; (d) measuring the sheer stress and the velocity and comparing the obtained values to predetermined values; (e) determining if either of the shear stress or the velocity are greater than or less than the predetermined values, and (f) optionally modifying the initial vascular layer and repeating steps (b)-(e). The invention also provides compositions comprising a vascular layer for use in tissue lamina as well as a medical devices having a vascular layer and kits.
摘要:
The present invention relates to tissue engineered compositions and methods comprising nanotopographic surface topography (“nanotopography”) for use in modulating the organization and/or function of multiple cell types.
摘要:
The present invention relates to methods for the design and fabrication of biological constructs, such as organ simulants or organ replacements, which contain complex microfluidic architecture. Designs of the present invention provide increased space in the lateral dimension, enabling a large number of small channels for small vessels.
摘要:
It has been discovered that improved yields of engineered tissue following implantation, and engineered tissue having enhanced mechanical strength and flexibility or pliability, can be obtained by implantation, preferably subcutaneously, of a fibrous polymeric matrix for a period of time sufficient to obtain ingrowth of fibrous tissue and/or blood vessels, which is the removed for subsequent implantation at the site where the implant is desired. The matrix is optionally seeded prior to the first implantation, after ingrowth of the fibrous tissue, or at the time of reimplantation. The time required for fibrous ingrowth typically ranges from days to weeks. The method is particularly useful in making valves and tubular structures, especially heart valves and blood vessels.
摘要:
The present invention generally relates to a combination of the fields of tissue engineering, drug discovery and drug development. It more specifically provides new methods and materials for testing the efficacy and safety of experimental drugs, defining the metabolic pathways of experimental drugs and characterizing the properties (e.g., side effects, new uses) of existing drugs. Preferably, evaluation is carried out in three-dimensional tissue-engineered systems, wherein drug toxicity, metabolism, interaction and/or efficacy can be determined.
摘要:
Polymeric materials are used to make a pliable, non-toxic, injectable porous template for vascular ingrowth. The pore size, usually between approximately 100 and 300 microns, allows vascular and connective tissue ingrowth throughout approximately 10 to 90% of the matrix following implantation, and the injection of cells uniformly throughout the implanted matrix without damage to the cells or patient. The introduced cells attach to the connective tissue within the matrix and are fed by the blood vessels. The preferred material for forming the matrix or support structure is a biocompatible synthetic polymer which degrades in a controlled manner by hydrolysis into harmless metabolites, for example, polyglycolic acid, polylactic acid, polyorthoester, polyanhydride, or copolymers thereof. The rate of tissue ingrowth increases as the porosity and/or the pore size of the implanted devices increases. The time required for the tissue to fill the device depends on the polymer crystallinity and is less for amorphous polymers versus semicrystalline polymers. The vascularity of the advancing tissue is consistent with time and independent of the biomaterial composition and morphology.
摘要:
Normal cells, such as fibroblasts or other tissue or organ cell types, are genetically engineered to express biologically active, therapeutic agents, such as proteins that are normally produced in small amounts, for example, MIS, or other members of the TGF-beta family Herceptin™, interferons, and anti-angiogenic factors. These cells are seeded into a matrix for implantation into the patient to be treated. Cells may also be engineered to include a lethal gene, so that implanted cells can be destroyed once treatment is completed. Cells can be implanted in a variety of different matrices. In a preferred embodiment, these matrices are implantable and biodegradable over a period of time equal to or less than the expected period of treatment, when cells engraft to form a functional tissue producing the desired biologically active agent. Implantation may be ectopic or in some cases orthotopic. Representative cell types include tissue specific cells, progenitor cells, and stem cells. Matrices can be formed of synthetic or natural materials, by chemical coupling at the time of implantation, using standard techniques for formation of fibrous matrices from polymeric fibers, and using micromachining or microfabrication techniques. These devices and strategies are used as delivery systems via standard or minimally invasive implantation techniques for any number of parenterally deliverable recombinant proteins, particularly those that are difficult to produce in large amounts and/or active forms using conventional methods of purification, for the treatment of a variety of conditions.
摘要:
Normal cells, such as fibroblasts or other tissue or organ cell types, are genetically engineered to express biologically active, therapeutic agents, such as proteins that are normally produced in small amounts, for example, MIS, or other members of the TGF-beta family Herceptin™, interferons, andanti-angiogenic factors. These cells are seeded into a matrix for implantation into the patient to be treated. Cells may also be engineered to include a lethal gene, so that implanted cells can be destroyed once treatment is completed. Cells can be implanted in a variety of different matrices. In a preferred embodiment, these matrices are implantable and biodegradable over a period of time equal to or less than the expected period of treatment, when cells engraft to form a functional tissue producing the desired biologically active agent. Implantation may be ectopic or in some cases orthotopic. Representative cell types include tissue specific cells, progenitor cells, and stem cells. Matrices can be formed of synthetic or natural materials, by chemical coupling at the time of implantation, using standard techniques for formation of fibrous matrices from polymeric fibers, and using micromachining or microfabrication techniques. These devices and strategies are used as delivery systems via standard or minimally invasive implantation techniques for any number of parenterally deliverable recombinant proteins, particularly those that are difficult to produce in large amounts and/or active forms using conventional methods of purification, for the treatment of a variety of conditions that produce abnormal growth, including treatment of malignant and benign neoplasias, vascular malformations (hemangiomas), inflammatory conditions, keloid formation, abdominal or plural adhesions, endometriosis, congenital or endocrine abnormalities, and other conditions that can produce abnormal growth such as infection. Efficacy of treatment with the therapeutic biologicals is detected by determining specific criteria, for example, cessation of cell proliferation, regression of abnormal tissue, or cell death, or expression of genes or proteins reflecting the above.