Abstract:
An inductor-integrated transformer as an embodiment of the present invention includes a transformer core including an upper core and a lower core; a transformer coil including a primary coil and a secondary coil; an inductor core including an upper core and a lower core; and an inductor coil, wherein the primary coil includes a plurality of input terminals spaced a first distance apart from a first surface of the transformer core; and a plurality of input terminals spaced a second distance apart from a second surface, and the output terminal is electrically connected to the secondary coil and the inductor coil, and the first distance is greater than the second distance.
Abstract:
An inductor includes a first magnetic body having a toroidal shape and having a ferrite; and a second magnetic body configured to be different from the first magnetic body and including a metal ribbon, wherein the second magnetic body includes an outer magnetic body disposed on an outer circumferential surface of the first magnetic body and an inner magnetic body disposed on an inner circumferential surface of the first magnetic body, and each of the outer magnetic body and inner magnetic body is wound in a plurality of layers in a circumferential direction of the first magnetic body.
Abstract:
A rare earth magnet and a motor including the same are provided. The rare earth magnet is based on an R—Fe—B alloy (R represents at least one rare-earth element comprising Y), wherein a plating layer of the element Co is formed on a surface of the rare earth magnet by an electroplating method.
Abstract:
Embodiments provide a magnetic shield for wireless power chargers and a method of manufacturing the same. The method includes forming flake powder having flake-type particles, forming an oxide film by performing oxygen heat treatment on the surface of the flake powder, performing insulation treatment on the surface of the flake powder provided with the oxide film formed thereon, and producing a sendust block by mixing and melting the insulation-treated flake powder and insulative resin powder. Therefore, a magnetic shield having high insulation characteristics and magnetic permeability may be provided.
Abstract:
A wireless power receiving apparatus which wirelessly charges power according to one embodiment of the present invention includes a substrate, a soft magnetic layer which is laminated on the substrate and is formed with a plurality of patterns including at least 3 lines radiated from predetermined points, and a coil which is laminated on the soft magnetic layer and receives electromagnetic energy radiated from a wireless power transmitting apparatus.
Abstract:
Provided is a light emitting apparatus. The light emitting apparatus includes a substrate; a light emitting device on the substrate; a fluorescent layer formed on the substrate and the light emitting device to surround the light emitting device; an encapsulant resin layer formed on the substrate and the fluorescent layer to surround the fluorescent layer; and a lens disposed on the light emitting device and supported by the substrate, wherein the lens includes a lens body having a first recess formed at a center of a top surface of the lens body and a second recess formed at a center of a bottom surface of the lens body, and a lens supporter provided at the bottom surface of the lens body to support the lens body such that the lens body is spaced apart from the substrate.
Abstract:
An embodiment of the present invention relates to a magnetic sheet having both an electromagnetic field shielding function and a heat dissipating function, and to a wirelessly charged magnetic member using same.
Abstract:
A soft magnetic alloy according to an embodiment of the present invention has a composition of the following Chemical formula: Fe100-a-bSiaCrb [Chemical Formula] where a is in a range of 1 to 7 at %, b is in a range of 3.5 to 17 at % and a+b is in a range of 10.5 to 18 at %.
Abstract:
An inductor includes a first magnetic body having a toroidal shape and having a ferrite; and a second magnetic body configured to be different from the first magnetic body and including a metal ribbon, wherein the second magnetic body includes an outer magnetic body disposed on an outer circumferential surface of the first magnetic body and an inner magnetic body disposed on an inner circumferential surface of the first magnetic body, and each of the outer magnetic body and inner magnetic body is wound in a plurality of layers in a circumferential direction of the first magnetic body.
Abstract:
Disclosed is a magnetic core having improved reliability. The magnetic core includes 37 to 44 mol % of manganese (Mn), 9 to 16 mol % of zinc (Zn), 42 to 52 mol % of iron (Fe), a magnetic additive, and a non-magnetic additive, wherein the magnetic core has a permeability of 2,900 or more and a core loss of 500 mW/cm3 or less.