Abstract:
A method for making a component for use in a semiconductor processing chamber is provided. A component body is formed from a conductive material having a coefficient of thermal expansion of less than 10.0×10−6/K. A metal oxide layer is then disposed over a surface of the component body.
Abstract:
A component of a plasma processing chamber having a coating on at least one surface that comprises yttrium aluminum. The coating is an aerosol deposited coating from a powder mixture of an yttrium oxide powder and an aluminum-containing powder and having an yttrium to aluminum ratio of 4:1 to 1:4 by molar number. The coating can be annealed to form a porous ternary oxide.
Abstract:
A method for forming a coating on a component of a substrate processing system includes arranging the component in a processing chamber and applying a ceramic material to form the coating on one or more surfaces of the component. The ceramic material is comprised of a mixture including a rare earth oxide and having a grain size of less than 150 nm and is applied while a temperature within the processing chamber is less than 400° C. The coating has a thickness of less than 30 μm. A heat treatment process is performed on the coated component in a heat treatment chamber. The heat treatment process includes increasing a temperature of the heat treatment chamber from a first temperature to a second temperature that does not exceed a melting temperature of the mixture over a first period and maintaining the second temperature for a second period.
Abstract:
A component for use as part of a plasma processing chamber for processing a wafer is provided. The component comprises a component body of silicon carbide doped with at least one of tungsten, tantalum, or boron.
Abstract:
A method for coating a part body for use in a plasma processing chamber is provided. The part body is received into a chamber. At least part of a surface of the part body is coated by physical vapor deposition or chemical vapor deposition with a coating with a thickness of no more than 30 microns consisting essentially of a Lanthanide series or Group III or Group IV element in an oxyfluoride.
Abstract:
A method of forming a dense oxide coating on an aluminum component of semiconductor processing equipment comprises cold spraying a layer of pure aluminum on a surface of the aluminum component to a predetermined thickness. A dense oxide coating is then formed on the layer of pure aluminum using a plasma electrolytic oxidation process, wherein the plasma electrolytic oxidation process causes the layer of pure aluminum to undergo microplasmic discharges, thus forming the dense oxide coating on the layer of pure aluminum on the surface of the aluminum component.