Abstract:
A method for treating a ceramic component for use in a semiconductor processing chamber, wherein the ceramic component comprises a ceramic laminate comprising a base zone comprising a first dielectric ceramic material, a protective, wherein the protective zone comprises a second dielectric ceramic material, and a transition zone between the protective zone and base zone, wherein the transition zone comprises the first dielectric ceramic material and the second dielectric ceramic material, wherein exposure of the ceramic component to UV light changes an optical property of at least a first part of the ceramic component is provided. A heat treatment of the ceramic component is provided by heating the ceramic component in a furnace to a temperature of between 400° C. to 1000° C. for a period between 2 hours to 20 hours, wherein the heat treatment changes the optical property of the first part of the ceramic component.
Abstract:
A component of a plasma processing chamber having at least one plasma facing surface of the component comprises single crystal metal oxide material. The component can be machined from a single crystal metal oxide ingot. Suitable single crystal metal oxides include spinel, yttrium oxide, and yttrium aluminum garnet (YAG). A single crystal metal oxide can be machined to form a gas injector of a plasma processing chamber.
Abstract:
Textured silicon components of a semiconductor processing chamber having hillock-shaped or pyramid-shaped structures on its surface, and a method of texturing such silicon components. The silicon component can be selectively textured using chemical means to form the hillock-shaped structures to increase the surface area of the silicon component to improve polymer adhesion.
Abstract:
A method for conditioning and cleaning a silicon part is provided. The silicon part is heated to a temperature of at least 300° C. in the presence of oxygen to form an outer surface of the silicon part into silicon oxide. The silicon part is placed in a wet bath wherein the bath is a solution that selectively etches silicon oxide with respect to silicon.
Abstract:
In accordance with this disclosure, there are provided several inventions, including an apparatus and method for creating a plasma resistant part, which may be formed of a sintered nanocrystalline ceramic material comprising yttrium, oxide, and fluoride. Example parts thus made may include windows, edge rings, or injectors. In one configuration, the parts may be yttria co-sintered with alumina, which may be transparent.
Abstract:
An apparatus adapted for use in a plasma processing chamber is provided. An aluminum body with at least one surface is provided. An aluminum oxide containing aerosol deposition coating is disposed over the at least one surface of the aluminum body. An yttrium containing aerosol deposition coating is disposed over the aluminum oxide containing aerosol deposition coating.
Abstract:
In accordance with this disclosure, there are provided several inventions, including an apparatus and method for brazing at least two aluminum or aluminum alloy components and providing an anodized coating, and an atomic layer deposition coating for adding plasma corrosion resistance.
Abstract:
A component for use in a semiconductor processing chamber is provided. A component body comprises a metallic material or ceramic material. A coating is disposed on a surface of the component body where the coating comprises a layer of yttrium aluminum oxide, the yttrium aluminum oxide layer being formed of a composition having a molar ratio of 1.0-0.9 yttrium to 1.0-1.1 aluminum over at least 90% of the yttrium aluminum oxide layer.
Abstract:
A method for making a component for use in a plasma processing chamber is provided. A non-oxide silicon containing powder composition is placed in a mold, wherein the non-oxide silicon containing powder composition consists essentially of a non-oxide silicon containing powder and at least one of a B or B4C dopant. The non-oxide silicon containing powder composition is subjected to spark plasma sintering (SPS) to form a spark plasma sintered component. The spark plasma sintered component is machined into a plasma processing chamber component.
Abstract:
A method for making a component for use in a semiconductor processing chamber is provided. A component body is formed from a conductive material having a coefficient of thermal expansion of less than 10.0×10−6/K. A metal oxide layer is then disposed over a surface of the component body.