摘要:
This invention discloses a semiconductor power device. The trenched semiconductor power device includes a trenched gate, opened from a top surface of a semiconductor substrate, surrounded by a source region encompassed in a body region near the top surface above a drain region disposed on a bottom surface of a substrate. The semiconductor power device further includes an implanting-ion block disposed above the top surface on a mesa area next to the body region having a thickness substantially larger than 0.3 micron for blocking body implanting ions and source ions from entering into the substrate under the mesa area whereby masks for manufacturing the semiconductor power device can be reduced.
摘要:
This invention discloses a new trenched vertical semiconductor power device that includes a capacitor formed between a conductive layer covering over an inter-dielectric layer disposed on top of a trenched gate. In a specific embodiment, the trenched vertical semiconductor power device may be a trenched metal oxide semiconductor field effect transistor (MOSFET) power device. The trenched gate is a trenched polysilicon gate and the conductive layer is a second polysilicon layer covering an inter-poly dielectric layer disposed on top of the trenched polysilicon gate. The conductive layer is further connected to a source of the vertical power device.
摘要:
This invention discloses a new trenched vertical semiconductor power device that includes a capacitor formed between a conductive layer covering over an inter-dielectric layer disposed on top of a trenched gate. In a specific embodiment, the trenched vertical semiconductor power device may be a trenched metal oxide semiconductor field effect transistor (MOSFET) power device. The trenched gate is a trenched polysilicon gate and the conductive layer is a second polysilicon layer covering an inter-poly dielectric layer disposed on top of the trenched polysilicon gate. The conductive layer is further connected to a source of the vertical power device.
摘要:
This invention discloses a method for calibrating a gate resistance measurement of a semiconductor power device that includes a step of forming a RC network on a test area on a semiconductor wafer adjacent to a plurality of semiconductor power chips and measuring a resistance and a capacitance of the RC network to prepare for carrying out a wafer-level measurement calibration of the semiconductor power device. The method further includes a step of connecting a probe card to a set of contact pads on the semiconductor wafer for carrying out the wafer-level measurement calibration followed by performing a gate resistance Rg measurement for the semiconductor power chips.
摘要:
This invention discloses a semiconductor power device that includes a plurality of power transistor cells surrounded by a trench opened in a semiconductor substrate. At least one active cell further includes a trenched source contact opened between the trenches wherein the trenched source contact opened through a source region into a body region for electrically connecting the source region to a source metal disposed on top of an insulation layer wherein a trench bottom surface of the trenched source contact further covered with a conductive material to function as an integrated Schottky barrier diode in said active cell. A shielding structure is disposed at the bottom and insulated from the trenched gate to provide shielding effect for both the trenched gate and the Schottky diode.
摘要:
This invention discloses a semiconductor power device that includes an active cell area having a plurality of power transistor cells and a junction barrier Schottky (JBS) area. The semiconductor power device includes the JBS area that further includes a plurality of Schottky diodes each having a PN junction disposed on an epitaxial layer near a top surface of a semiconductor substrate wherein the PN junction further includes a counter dopant region disposed in the epitaxial layer for reducing a sudden reversal of dopant profile near the PN junction for preventing an early breakdown in the PN junction.
摘要:
This invention discloses bottom-source lateral diffusion MOS (BS-LDMOS) device. The device has a source region disposed laterally opposite a drain region near a top surface of a semiconductor substrate supporting a gate thereon between the source region and a drain region. The BS-LDMOS device further has a combined sinker-channel region disposed at a depth in the semiconductor substrate entirely below a body region disposed adjacent to the source region near the top surface wherein the combined sinker-channel region functioning as a buried source-body contact for electrically connecting the body region and the source region to a bottom of the substrate functioning as a source electrode. A drift region is disposed near the top surface under the gate and at a distance away from the source region and extending to and encompassing the drain region. The combined sinker-channel region extending below the drift region and the combined sinker-channel region that has a dopant-conductivity opposite to and compensating the drift region for reducing the source-drain capacitance.
摘要:
This invention discloses a new MOSFET device. The MOSFET device has an improved operation characteristic achieved by connecting a shunt FET of low impedance to the MOSFET device. The shunt FET is to shunt a transient current therethrough. The shunt FET is employed for preventing an inadvertent turning on of the MOSFET device. The inadvertent turning on of the MOSFET may occur when a large voltage transient occurs at the drain of the MOSFET device. By connecting the gate of the shunt FET to the drain of the MOSFET device, a low impedance path is provided at the right point of time during the circuit operation to shunt the current without requiring any external circuitry.
摘要:
This invention discloses a power switch that includes a fast-switch semiconductor power device and a slow-switch semiconductor power device controllable to turn on and off a current transmitting therethrough. The slow-switch semiconductor power device further includes a ballasting resistor for increasing a device robustness of the slow switch semiconductor power device. In an exemplary embodiment, the fast-switch semiconductor power device includes a fast switch metal oxide semiconductor field effect transistor (MOSFET) and the slow-switch semiconductor power device includes a slow switch MOSFET wherein the slow switch MOSFET further includes a source ballasting resistor.
摘要:
This invention discloses a semiconductor power device. The trenched semiconductor power device includes a trenched gate, opened from a top surface of a semiconductor substrate, surrounded by a source region encompassed in a body region near the top surface above a drain region disposed on a bottom surface of a substrate. The semiconductor power device further includes an implanting-ion block disposed above the top surface on a mesa area next to the body region having a thickness substantially larger than 0.3 micron for blocking body implanting ions and source ions from entering into the substrate under the mesa area whereby masks for manufacturing the semiconductor power device can be reduced.