摘要:
The present disclosure provides a semiconductor device. The semiconductor device includes a semiconductor substrate. The semiconductor device includes a gate that is disposed over the substrate. The substrate has a recess. The semiconductor device includes a trench liner that is coated along the recess. The trench liner contains a semiconductor crystal material. The trench liner directly abuts the source/drain stressor device. The semiconductor device also includes a dielectric trench component that is disposed on the trench liner and filling the recess. The semiconductor device includes a source/drain stressor device that is disposed in the substrate. The source/drain stressor device is disposed between the gate and the trench liner.
摘要:
A method for constant power density scaling in MOSFETs is provided. A method for manufacturing an integrated circuit includes computing fixed scaling factors for a first fabrication process based on a second fabrication process, computing settable scaling factors for the integrated circuit to be fabricated using the first fabrication process, determining parameters of the integrated circuit based on the settable scaling factors, and manufacturing the integrated circuit using the determined parameters. The first fabrication process creates devices having a smaller device dimension than the second fabrication process and the settable scaling factors are set based on the fixed scaling factors.
摘要:
A device includes a silicon substrate, and a III-V compound semiconductor region over and contacting the silicon substrate. The III-V compound semiconductor region has a U shaped interface with the silicon substrate, with radii of the U shaped interface being smaller than about 1,000 nm.
摘要:
The present disclosure provides a system for in-situ spectrometry. The system includes a wafer-cleaning machine that cleans a surface of a semiconductor wafer using a cleaning solution. The system also includes a spectrometry machine that is coupled to the wafer-cleaning machine. The spectrometry machine receives a portion of the cleaning solution from the wafer-cleaning machine. The portion of the cleaning solution collects particles from the wafer during the cleaning. The spectrometry machine is operable to analyze a particle composition of a portion of the wafer based on the portion of the cleaning solution, while the wafer remains in the wafer-cleaning machine during the particle composition analysis.
摘要:
A device includes a silicon substrate, and a III-V compound semiconductor region over and contacting the silicon substrate. The III-V compound semiconductor region has a U shaped interface with the silicon substrate, with radii of the U shaped interface being smaller than about 1,000 nm.
摘要:
A method of forming an integrated circuit structure includes forming an insulation layer over at least a portion of a substrate; forming a plurality of semiconductor pillars over a top surface of the insulation layer. The plurality of semiconductor pillars is horizontally spaced apart by portions of the insulation layer. The plurality of semiconductor pillars is allocated in a periodic pattern. The method further includes epitaxially growing a III-V compound semiconductor film from top surfaces and sidewalls of the semiconductor pillars.
摘要:
A method of forming an integrated circuit structure includes providing a wafer having a silicon substrate; forming a plurality of shallow trench isolation (STI) regions in the silicon substrate; and forming recesses by removing top portions of the silicon substrate between opposite sidewalls of the plurality of STI regions. Substantially all long sides of all recesses in the silicon substrate extend in a same direction. A III-V compound semiconductor material is then epitaxially grown in the recesses.
摘要:
A multi-gate transistor includes a semiconductor fin over a substrate. The semiconductor fin includes a central fin formed of a first semiconductor material; and a semiconductor layer having a first portion and a second portion on opposite sidewalls of the central fin. The semiconductor layer includes a second semiconductor material different from the first semiconductor material. The multi-gate transistor further includes a gate electrode wrapping around sidewalls of the semiconductor fin; and a source region and a drain region on opposite ends of the semiconductor fin. Each of the central fin and the semiconductor layer extends from the source region to the drain region.
摘要:
A semiconductor apparatus includes fin field-effect transistor (FinFETs) having controlled fin heights. The apparatus includes a high fin density area and a low fin density area. Each fin density area includes fins and dielectric material between the fins. The dielectric material includes different dopant concentrations for different fin density areas and is the same material as deposited.
摘要:
The disclosure relates to a Fin field effect transistor (FinFET). An exemplary structure for a FinFET comprises a substrate comprising a top surface; a first fin and a second fin extending above the substrate top surface, wherein each of the fins has a top surface and sidewalls; an insulation layer between the first and second fins extending part way up the fins from the substrate top surface; a first gate dielectric covering the top surface and sidewalls of the first fin having a first thickness and a second gate dielectric covering the top surface and sidewalls of the second fin having a second thickness less than the first thickness; and a conductive gate strip traversing over both the first gate dielectric and second gate dielectric.