Abstract:
A method and apparatus are disclosed for delivery of a drug to a recipient. In some embodiments, the delivery apparatus may unseal a drug containing reservoir. In some embodiments, the delivery rate may be controlled and/or adjustable. Optionally the apparatus may be disposable. Optionally, the apparatus may have a low profile and/or be wearable and/or attachable to the recipient. Optionally, discharge of the drug and/or unsealing of the reservoir may be driven by a plunger moving parallel to the base of the apparatus. Optionally, the apparatus may release a hypodermic needle into the recipient. Optionally, release of the hypodermic needle may be in a direction non-parallel and/or orthogonal to the direction of movement of the plunger. Optionally, prior to release, the hypodermic needle may be preserved in an aseptic state by a needle opening septum sealing a needle opening. Optionally, upon release, the hypodermic needle may pierce the needle opening septum.
Abstract:
An apparatus (110) includes an activation mechanism (20) and a safety latch (122). The activation mechanism is operative to deploy a needle (116) to protrude out of a housing (112), the needle (116) having a longitudinal axis. The safety latch (122) is movably mounted on the housing (112) and formed with a needle opening (129) to allow the needle (116) to pass therethrough. The safety latch (122) has a first position wherein the needle (116) is aligned to pass through the needle opening (129) and a second position wherein the safety latch (122) is moved with respect to the housing (112) such that the needle (116) is blocked from movement in a direction parallel to the longitudinal axis thereof by a portion of the safety latch (122) distanced from the needle opening (129).
Abstract:
Extension rods of a telescoping assembly (TSA) may be assembled in a single direction. The rods may optionally be threaded together from a reverse extended configuration. The rods may optionally resist disattachement during extension. The inner rod may optionally included a leading fastener and/or the outer rod may optionally include a rear fastener. Each rod may optionally be molded as a single piece. End caps may optionally be added to the TSA after extension of the rods. An end cap may optionally include a rotation stopper. In some embodiments the TSA may include a supporting shoulder.
Abstract:
A cartridge insertion assembly including apparatus with a pathway formed therein, a cartridge including a cartridge coupling element connectable to an activation mechanism disposed in the apparatus operative to cause a substance contained in the cartridge to be metered out of the cartridge, and a door pivoted to the apparatus that includes a door coupling element arranged with respect to the cartridge such that when the door is in a fully closed position, the door coupling element couples the cartridge coupling element with a coupling element of the activation mechanism.
Abstract:
A method is disclosed for state sensing and controlling of a multi-state drug delivery device. In some embodiments a power switch is reused as a state sensor. Optionally the state sensor may be toggled by user actions and/or the movements of parts of the device, for example needle and/or a protective element. Optionally, drug discharge and/or status indication is controlled in accordance with sensor output. In some embodiments control is by means of a processor. Alternatively or additionally, control is by means of simple physical circuits.
Abstract:
Apparatus is described for administering a substance to a subject. A vial contains the substance and a stopper is disposed within the vial and is slidably coupled to the vial. A first threaded element is (a) rotatable with respect to the vial and (b) substantially immobile proximally with respect to the vial during rotation of the first threaded element. A second threaded element is threadedly coupled to the first threaded element. At least a distal end of the second threaded element is substantially non-rotatable with respect to the vial, and the distal end of the second threaded element defines a coupling portion that couples the second threaded element to the stopper. The first threaded element, by rotating, linearly advances the stopper and at least the distal end of the second threaded element toward a distal end of the vial. Other embodiments are also described.
Abstract:
A plunger seal for a drug delivery device may have a mobile and an enhanced sealing parked state. Optionally, the cartridge is stored with the plunger seal in the parked state. Optionally, drug discharge occurs with the plunger seal in the mobile state. For example in the parked state there may be increased normal force between the plunger seal and an inner wall of the cartridge. Optionally there is limited deformation of the plunger seal between the parked and mobile states. Optionally the plunger seal is biased to the parked state. Optionally, a distal force switches the plunger seal to the mobile state. For example, the plunger seal may have an inner cavity that is expanded radially by core. A biasing element optionally biases the core wedging it proximally to the parked state. A distal force on the core may push it distally to the mobile state.
Abstract:
A cartridge insertion assembly including apparatus with a pathway formed therein, a cartridge including a cartridge coupling element connectable to an activation mechanism disposed in the apparatus operative to cause a substance contained in the cartridge to be metered out of the cartridge, and a door pivoted to the apparatus that includes a door coupling element arranged with respect to the cartridge such that when the door is in a fully closed position, the door coupling element couples the cartridge coupling element with a coupling element of the activation mechanism.
Abstract:
A cartridge comprising a reservoir part and an extension extending from said reservoir part, said extension defining a fluid path and comprising a molding and a first needle extending from said molding, the extension turning to a finite angle with respect to an axis of said reservoir part and wherein at least part of said first needle is likewise at said finite angle, at least some of said part of said first needle at said finite angle being enclosed within said molding of said fluid path.A drug delivery device may be used with the cartridge and includes a skin-contacting surface. In use, the longitudinal axis of the interior of the cartridge may be disposed substantially parallel to the skin-contacting surface.
Abstract:
A syringe cartridge comprising a reservoir part and an extension extending from said reservoir part, said extension defining a fluid path and comprising a molding and a first needle extending from said molding, the extension turning to a finite angle with respect to an axis of said reservoir part and wherein at least part of said first needle is likewise at said finite angle, at least some of said part of said first needle at said finite angle being enclosed within said molding of said fluid path.A drug delivery device may be used with the cartridge and includes a skin-contacting surface. In use the longitudinal axis of the interior of the cartridge may be disposed substantially parallel to the skin-contacting surface.