摘要:
A photoelectric conversion device comprising a semiconductor substrate of a first conduction type, and a photoelectric conversion element having an impurity region of the first conduction type and a plurality of impurity regions of a second conduction type opposite to the first conduction type. The plurality of second-conduction-type impurity regions include at least a first impurity region, a second impurity region provided between the first impurity region and a surface of the substrate, and a third impurity region provided between the second impurity region and the surface of the substrate. A concentration C1 corresponding to a peak of the impurity concentration in the first impurity region, a concentration C2 corresponding to a peak of the impurity concentration in the second impurity region and a concentration C3 corresponding to a peak of the impurity concentration in the third impurity region satisfy the following relationship: C2
摘要:
The present invention, in a photoelectric conversion device in which a pixel including a photoelectric conversion device for converting a light into a signal charge and a peripheral circuit including a circuit for processing the signal charge outside a pixel region in which the pixel are disposed on the same substrate, comprising: a first semiconductor region of a first conductivity type for forming the photoelectric region, the first semiconductor region being formed in a second semiconductor region of a second conductivity type; and a third semiconductor region of the first conductivity type and a fourth semiconductor region of the second conductivity type for forming the peripheral circuit, the third and fourth semiconductor regions being formed in the second semiconductor region; wherein in that the impurity concentration of the first semiconductor region is higher than the impurity concentration of the third semiconductor region.
摘要:
A photoelectric conversion apparatus includes: a first interlayer insulation film disposed on a semiconductor substrate; a first plug disposed in a first hole in the first interlayer insulation film, and serving to electrically connect between a plurality of active regions disposed in the semiconductor substrate, between gate electrodes of a plurality of MOS transistors, or between the active region and the gate electrode of the MOS transistor, not through the wiring of the wiring layer; and a second plug disposed in a second hole in the first interlayer insulation film, the second plug being electrically connected to the active region, wherein a wiring arranged over the second plug and closest to the second plug is electrically connected to the second plug, and the wiring electrically connected to the second plug forms a portion of dual damascene structure. By such a structure, incidence efficiency of light onto a photoelectric conversion element can be improved.
摘要:
A photoelectric conversion apparatus includes: a first interlayer insulation film disposed on a semiconductor substrate; a first plug disposed in a first hole in the first interlayer insulation film, and serving to electrically connect between a plurality of active regions disposed in the semiconductor substrate, between gate electrodes of a plurality of MOS transistors, or between the active region and the gate electrode of the MOS transistor, not through the wiring of the wiring layer; and a second plug disposed in a second hole in the first interlayer insulation film, the second plug being electrically connected to the active region, wherein a wiring arranged over the second plug and closest to the second plug is electrically connected to the second plug, and the wiring electrically connected to the second plug forms a portion of dual damascene structure. By such a structure, incidence efficiency of light onto a photoelectric conversion element can be improved.
摘要:
A photoelectric conversion apparatus includes: a first interlayer insulation film disposed on a semiconductor substrate; a first plug disposed in a first hole in the first interlayer insulation film, and serving to electrically connect between a plurality of active regions disposed in the semiconductor substrate, between gate electrodes of a plurality of MOS transistors, or between the active region and the gate electrode of the MOS transistor, not through the wiring of the wiring layer; and a second plug disposed in a second hole in the first interlayer insulation film, the second plug being electrically connected to the active region, wherein a wiring arranged over the second plug and closest to the second plug is electrically connected to the second plug, and the wiring electrically connected to the second plug forms a portion of dual damascene structure. By such a structure, incidence efficiency of light onto a photoelectric conversion element can be improved.
摘要:
A photoelectric conversion apparatus includes: a first interlayer insulation film disposed on a semiconductor substrate; a first plug disposed in a first hole in the first interlayer insulation film, and serving to electrically connect between a plurality of active regions disposed in the semiconductor substrate, between gate electrodes of a plurality of MOS transistors, or between the active region and the gate electrode of the MOS transistor, not through the wiring of the wiring layer; and a second plug disposed in a second hole in the first interlayer insulation film, the second plug being electrically connected to the active region, wherein a wiring arranged over the second plug and closest to the second plug is electrically connected to the second plug, and the wiring electrically connected to the second plug forms a portion of dual damascene structure. By such a structure, incidence efficiency of light onto a photoelectric conversion element can be improved.
摘要:
A photoelectric conversion device is configured to include a light receiving region, for converting light to signal charges, and transistors. An insulation film is arranged on a surface of the light receiving region and under gate electrodes of the transistors. A first reflection prevention film of a refractive index higher than that of the insulation film is arranged at least above the light receiving region, to sandwich the insulation film between the first reflection prevention film and the light receiving region, and includes a silicon nitride film. An interlayer insulation film is arranged on the first reflection prevention film, and a second reflection prevention film is laminated between the first reflection prevention film and the interlayer insulation film. At least one of side walls of the gate electrodes of the transistors includes the silicon nitride film and a silicon oxide film arranged between the silicon nitride film and the gate electrodes. A transistor having a gate electrode with such a side wall includes a source or drain region of an LDD structure, in which a heavily doped region of the source or drain region of the LDD structure is self aligned to the side wall formed from the silicon nitride film and the silicon oxide film.
摘要:
A semiconductor device, wherein an electrode wiring, which is in contact with semiconductor layers of mutually different conductive types and serves to connect at least he layers of mutually different conductive types, comprises a first portion principally composed of a component same as the principal component of the semiconductor layers, and a second portion consisting of a metal.
摘要:
A semiconductor device including a field effect transistor has source and drain areas formed on the main surface of a semiconductor substrate and a gate electrode formed on the main surface across a gate insulation film. The gate electrode has a first electrode portion with an electron donating surface and a second electrode portion consisting of metal formed on the first electrode portion.
摘要:
Disclosed is a method of manufacturing semiconductor devices in which a desired pattern having an area size larger than the field size that can be obtained in one exposure process step of an exposure device is formed. The manufacturing method includes the steps of dividing the desired pattern into a plurality of portions, and conducting exposure on the dividing patterns in a joined fashion.