摘要:
Microlithographic illumination system includes individually drivable elements to variably illuminate a pupil surface of the system. Each element deviates an incident light beam based on a control signal applied to the element. The system also includes an instrument to provide a measurement signal, and a model-based state estimator configured to compute, for each element, an estimated state vector based on the measurement signal. The estimated state vector represents: a deviation of a light beam caused by the element; and a time derivative of the deviation. The illumination system further includes a regulator configured to receive, for each element: a) the estimated state vector; and b) target values for: i) the deviation of the light beam caused by the deviating element; and ii) the time derivative of the deviation.
摘要:
The disclosure relates to an illumination system of a microlithographic projection exposure apparatus. The illumination system can include a depolarizer which in conjunction with a light mixing system disposed downstream in the light propagation direction at least partially causes effective depolarization of polarized light impinging on the depolarizer. The illumination system can also include a microlens array which is arranged upstream of the light mixing system in the light propagation direction. The microlens array can include a plurality of microlenses arranged with a periodicity. The depolarizer can be configured so that a contribution afforded by interaction of the depolarizer with the periodicity of the microlens array to a residual polarization distribution occurring in a pupil plane arranged downstream of the microlens array in the light propagation direction has a maximum degree of polarization of not more than 5%.
摘要:
An illumination optical unit illuminates an object field using radiation with a first wavelength. The illumination optical unit includes a filter element for suppressing radiation with a second wavelength. The filter element includes at least one component with an obscuring action. As a result of the obscuring action, during operation of the illumination optical unit there is at least one region of reduced intensity of radiation with the first wavelength on a first optical element, arranged downstream of the filter element in the light direction, of the illumination optical unit. The filter element can assume a multiplicity of positions, which lead to different regions of reduced intensity. For each point on an optical used surface of the first optical element, there is at least one position such that the point does not lie in a region of reduced intensity.
摘要:
A polarization-modulating optical element including an optically active crystal material has a thickness profile where the thickness, as measured in the direction of the optical axis, varies over the area of the optical element. The polarization-modulating optical element has the effect that the plane of oscillation of a first linearly polarized light ray and the plane of oscillation of a second linearly polarized light ray are rotated, respectively, by a first angle of rotation and a second angle of rotation, with the first angle of rotation and the second angle of rotation being different from each other.
摘要:
The disclosure relates to an illumination system of a microlithographic projection exposure apparatus. The illumination system can include a depolariser which in conjunction with a light mixing system disposed downstream in the light propagation direction at least partially causes effective depolarisation of polarised light impinging on the depolariser. The illumination system can also include a microlens array which is arranged upstream of the light mixing system in the light propagation direction. The microlens array can include a plurality of microlenses arranged with a periodicity. The depolariser can be configured so that a contribution afforded by interaction of the depolariser with the periodicity of the microlens array to a residual polarisation distribution occurring in a pupil plane arranged downstream of the microlens array in the light propagation direction has a maximum degree of polarisation of not more than 5%.
摘要:
The invention relates to a filter device for an illumination system, especially for the correction of the illumination of the illuminating pupil, including a light source, with the illumination system being passed through by a bundle of illuminating rays from the light source to an object plane, with the bundle of illuminating rays impinging upon the filter device, including at least one filter element which can be introduced into the beam path of the bundle of illuminating rays, with the filter element including an actuating device, so that the filter element can be brought with the help of the actuating device into the bundle of illuminating rays.
摘要:
An optical system for generating a light beam for treating a substrate in a substrate plane is disclosed. The light beam has a beam length in a first dimension perpendicular to the propagation direction of the light beam and a beam width in a second dimension perpendicular to the first dimension and also perpendicular to the light propagation direction.The optical system includes a mixing optical arrangement which divides the light beam in at least one of the first and second dimensions into a plurality of light paths incident in the substrate plane in a manner superimposed on one another. At least one coherence-influencing optical arrangement is present in the beam path of the light beam and acts on the light beam to at least reduce the degree of coherence of light for at least one light path distance of one light path from at least one other light path.
摘要:
In general, in one aspect, the disclosure features an illumination system for a microlithographic projection exposure apparatus configured so that during operation the illumination system illuminates a reticle plane of the microlithographic projection exposure apparatus with light of a desired polarization distribution. The illumination system includes a first polarization-influencing optical element and a second polarization-influencing optical element. During operation the first polarization-influencing optical element converts a first polarization distribution produced by a light source unit into a second polarization distribution which is different from the first polarization distribution. The second polarization-influencing optical element converts the second polarization distribution into a third polarization distribution corresponding to the desired polarization distribution, the second polarization-influencing optical element causing an effective rotation of the preferred polarization direction through 90° over its optically effective surface.
摘要:
A polarization pattern assembly for use in an illuminator and an apparatus for providing at least one polarization pattern in a pupil of an illuminator for a lithography system are provided. A polarization pattern assembly for use in an illuminator having a pupil includes a frame (110) and at least one polarization pane (102, 102a, 102b) coupled to the frame (110), the polarization pane (102, 102a, 102b) changing a direction of polarization of light passing therethrough, whereby at least one polarization pattern is obtained across the pupil of the illuminator, and wherein the polarization pane (102, 102a, 102b) includes an optically active material.
摘要:
An illumination system of a microlithographic projection exposure apparatus includes a beam deflection array including a number beam deflection elements, for example mirrors. Each beam deflection element is adapted to deflect an impinging light beam by a deflection angle that is variable in response to control signals. The light beams reflected from the beam deflection elements produce spots in a system pupil surface. The number of spots illuminated in the system pupil surface during an exposure process, during which a mask is imaged on a light sensitive surface, is greater than the number of beam deflection elements. This may be accomplished with the help of a beam multiplier unit that multiplies the light beams reflected from the beam deflection elements. In another embodiment the beam deflecting elements are controlled such that the irradiance distribution produced in the system pupil surface changes between two consecutive light pulses of an exposure process.