Abstract:
The present invention discloses an asymmetric bidirectional silicon-controlled rectifier, which comprises: a second conduction type substrate; a first conduction type undoped epitaxial layer formed on the substrate; a first well and a second well both formed inside the undoped epitaxial layer and separated by a portion of the undoped epitaxial layer; a first buried layer formed in a junction between the first well and the substrate; a second buried layer formed in a junction between the second well and the substrate; a first and a second semiconductor area with opposite conduction type both formed inside the first well; a third and a fourth semiconductor area with opposite conduction type both formed inside the second well, wherein the first and second semiconductor areas are connected to the anode of the silicon-controlled rectifier, and the third and fourth semiconductor areas are connected to the cathode of the silicon-controlled rectifier.
Abstract:
An ESD protection circuit is provided. The circuit includes a discharging component, a diode, and an ESD detection circuit. The discharging component is coupled between an input/output pad and a first power line of an IC. The diode is coupled between the input/output pad and a second power line of the IC in a forward direction toward the second power line. The ESD detection circuit includes a capacitor, a resistor, and a triggering component. The capacitor and the resistor are formed in series and coupled between the first power line and the second power line. The triggering component has a positive power end coupled to the input/output pad and a negative power end coupled to the first power line. An input of the triggering component is coupled to a node between the capacitor and the resistor.
Abstract:
An integrated circuit for providing electrostatic discharge protection that includes a contact pad, a CMOS device including a transistor having a substrate, and a CDM clamp for providing electrostatic discharge protection coupled between the contact pad and the CMOS device, the CDM clamp including at least one active device, wherein the CDM clamp conducts electrostatic charges accumulated in the substrate of the transistor to the contact pad and wherein the CMOS device is coupled between a high voltage line and a low voltage line.
Abstract:
An electrostatic discharge protection circuit includes a first terminal, a second terminal, an electrostatic discharge device coupled between the first and second terminals, and an active device coupled to the electrostatic discharge device and controlling an electrostatic current through the electrostatic discharge device. The electrostatic discharge device includes at least one of an SCR, an FOD, an active device, a BJT, and an MOS device.
Abstract:
An integrated circuit device for electrostatic discharge protection that includes a semiconductor substrate, a lightly doped region of a first dopant type formed in the substrate, a first diffusion region of the first dopant type formed at least partially in the lightly doped region, a second diffusion region of the first dopant type formed at least partially in the lightly doped region and spaced apart from the first diffusion region, a resistive path defined by the lightly doped region, the first and the second diffusion regions, and a third diffusion region of a second dopant type formed in the lightly doped region, and disposed between and spaced apart from the first and the second diffusion regions, wherein the third diffusion region keeps the resistive path at a low resistive state until a normal operation period occurs.
Abstract:
An electrostatic discharge protection device that includes a semiconductor substrate of a first dopant type, at least one source/drain pair of a second dopant type formed in the substrate, wherein the source/drain pair is separated to define a channel region therebetween, a lightly-doped region of the first dopant type defined between the source/drain pair and including at least a portion of the channel region, a gate dielectric layer formed over the substrate, and a gate formed over the gate dielectric layer and above the channel region.
Abstract:
An electrostatic discharge protection device that includes a semiconductor substrate of a first dopant type, at least one source/drain pair of a second dopant type formed in the substrate, wherein the source/drain pair is separated to define a channel region therebetween, a lightly-doped region of the first dopant type defined between the source/drain pair and including at least a portion of the channel region, a gate dielectric layer formed over the substrate, and a gate formed over the gate dielectric layer and above the channel region.
Abstract:
A low-capacitance bonding pad for a semiconductor device. A diffusion region is formed in a substrate, and a bonding pad is formed on the substrate and aligned with the diffusion region. The bonding pad is made from a stacked metal layer and a metal layer. The stacked metal layer is made from a plurality of metal layers and a plurality of dielectric layers, and the metal layers and the dielectric layers are stacked alternately. The metal layers stacked in the stacked metal layer are formed with small areas. Each of the metal layers stacked in the stacked metal layer is coupled with the adjacent metal layer by via plugs.
Abstract:
A structure and fabrication method using latch-up implantation to improve latch-up immunity in CMOS circuit. The impedance of parasitic SCR conducting path is raised by performing an ion-implantation process on a cathode and an anode of a parasitic SCR which may induce latch-up phenomenon. Thus, the parasitic SCR is thus not easily to be conducted with a higher resistance to noise. Therefore, the latch-up immunity can be improved. In addition, the ion implantation process can be performed to achieve the objective of preventing latch-up effect without consuming more area for layout, thus greatly enhances the flexibility in circuit design.
Abstract:
A low-capacitance bonding pad for a semiconductor device. A diffusion region is formed in a substrate, and a bonding pad is formed on the substrate and aligned with the diffusion region. The bonding pad is made from a stacked metal layer and a metal layer. The stacked metal layer is made from a plurality of metal layers and a plurality of dielectric layers, and the metal layers and the dielectric layers are stacked alternately. The metal layers stacked in the stacked metal layer are formed with small areas. Each of the metal layers stacked in the stacked metal layer is coupled with the adjacent metal layer by via plugs.