Abstract:
A target material supply apparatus for an extreme ultraviolet (EUV) light source includes a tube that includes a first end, a second end, and a sidewall defined between the first and second ends. At least a portion of an outer surface of the tube includes an electrically insulating material, the first end receives a pressurized target material, and the second end defines an orifice through which the pressurized target material passes to produce a stream of target material droplets. The target material supply apparatus also includes an electrically conductive coating on the outer surface of the tube. The coating is configured to electrically connect the outer surface of the tube to ground to thereby reduce surface charge on the outer surface.
Abstract:
A device is disclosed which may comprise a system generating a plasma at a plasma site, the plasma producing EUV radiation and ions exiting the plasma. The device may also include an optic, e.g., a multi-layer mirror, distanced from the site by a distance, d, and a flowing gas disposed between the plasma and optic, the gas establishing a gas pressure sufficient to operate over the distance, d, to reduce ion energy below a pre-selected value before the ions reach the optic. In one embodiment, the gas may comprise hydrogen and in a particular embodiment, the gas may comprise greater than 50 percent hydrogen by volume.
Abstract:
An apparatus and method is described which may comprise a plasma produced extreme ultraviolet (“EUV”) light source multilayer collector which may comprise a plasma formation chamber; a shell within the plasma formation chamber in the form of a collector shape having a focus; the shell having a sufficient size and thermal mass to carry operating heat away from the multilayer reflector and to radiate the heat from the surface of the shell on a side of the shell opposite from the focus. The material of the shell may comprise a material selected from a group which may comprise silicon carbide, silicon, Zerodur or ULE glass, aluminum, beryllium, molybdenum, copper and nickel. The apparatus and method may comprise at least one radiative heater directed at the shell to maintain the steady state temperature of the shell within a selected range of operating temperatures.
Abstract:
Apparatus and methods are disclosed for forming plasma generated EUV light source optical elements, e.g., reflectors comprising MLM stacks employing various binary layer materials and capping layer(s) including single and binary capping layers for utilization in plasma generated EUV light source chambers, particularly where the plasma source material is reactive with one or more of the MLM materials.
Abstract:
Systems and methods are disclosed for reducing the influence of plasma generated debris on internal components of an EUV light source. In one aspect, an EUV metrology monitor is provided which may have a heater to heat an internal multi-layer filtering mirror to a temperature sufficient to remove deposited debris from the mirror. In another aspect, a device is disclosed for removing plasma generated debris from an EUV light source collector mirror having a different debris deposition rate at different zones on the collector mirror. In a particular aspect, an EUV collector mirror system may comprise a source of hydrogen to combine with Li debris to create LiH on a collector surface; and a sputtering system to sputter LiH from the collector surface. In another aspect, an apparatus for etching debris from a surface of a EUV light source collector mirror with a controlled plasma etch rate is disclosed.
Abstract:
The present invention provides a reliable, high-repetition rate, production line compatible high energy photon source. A very hot plasma containing an active material is produced in vacuum chamber. The active material is an atomic element having an emission line within a desired extreme ultraviolet (EUV) range. A pulse power source comprising a charging capacitor and a magnetic compression circuit comprising a pulse transformer, provides electrical pulses having sufficient energy and electrical potential sufficient to produce the EUV light at an intermediate focus at rates in excess of 5 Watts. In preferred embodiments designed by Applicants in-band, EUV light energy at the intermediate focus is 45 Watts extendable to 105.8 Watts.
Abstract:
An apparatus and method is described for effectively and efficiently providing plasma irradiation laser light pulses in an LPP EUV light source which may comprise a laser initial target irradiation pulse generating mechanism irradiating a plasma initiation target with an initial target irradiation pulse to form an EUV generating plasma having an emission region emitting in-band EUV light; a laser plasma irradiation pulse generating mechanism irradiating the plasma with a plasma irradiation pulse after the initial target irradiation pulse so as to compress emission material in the plasma toward the emission region of the plasma. The plasma irradiation pulse may comprise a laser pulse having a wavelength that is sufficiently longer than a wavelength of the initial target irradiation pulse to have an associated lower critical density resulting in absorption occurring within the plasma in a region of the plasma defined by the wavelength of the plasma irradiation pulse sufficiently separated from an initial target irradiation site to achieve compression of the emission material, and the may compress the emission region. The laser plasma irradiation pulse may produce an aerial mass density in the ablating cloud of the plasma sufficient to confine the favorably emitting plasma for increased conversion efficiency. The deposition region for the plasma irradiation pulse may be is removed enough from the initial target surface so as to insure compression of the favorably emitting plasma. A high conversion efficiency laser produced plasma extreme ultraviolet (“EUV”) light source may comprise a laser initial target irradiation pulse generating mechanism irradiating a plasma initiation target with a target irradiation pulse to form an EUV generating plasma emitting in-band EUV light; a plasma tamper substantially surrounding the plasma to constrain the expansion of the plasma.
Abstract:
Apparatus and methods are disclosed for forming plasma generated EUV light source optical elements, e.g., reflectors comprising MLM stacks employing various binary layer materials and capping layer(s) including single and binary capping layers for utilization in plasma generated EUV light source chambers, particularly where the plasma source material is reactive with one or more of the MLM materials.
Abstract:
An EUV light source is disclosed that may include a laser source, e.g. CO2 laser, a plasma chamber, and a beam delivery system for passing a laser beam from the laser source into the plasma chamber. Embodiments are disclosed which may include one or more of the following; a bypass line may be provided to establish fluid communication between the plasma chamber and the auxiliary chamber, a focusing optic, e.g. mirror, for focusing the laser beam to a focal spot in the plasma chamber, a steering optic for steering the laser beam focal spot in the plasma chamber, and an optical arrangement for adjusting focal power.
Abstract:
A device is disclosed which may comprise a system generating a plasma at a plasma site, the plasma producing EUV radiation and ions exiting the plasma. The device may also include an optic, e.g., a multi-layer mirror, distanced from the site by a distance, d, and a flowing gas disposed between the plasma and optic, the gas establishing a gas pressure sufficient to operate over the distance, d, to reduce ion energy below a pre-selected value before the ions reach the optic. In one embodiment, the gas may comprise hydrogen and in a particular embodiment, the gas may comprise greater than 50 percent hydrogen by volume.