摘要:
MOS transistors and CMOS devices comprising a plurality of transistors including metal-based gate electrodes of different composition are formed by a process comprising: depositing a first blanket layer of a first metal on a thin gate insulator layer extending over first and second active device (e.g., a MOS transistor) precursor regions of a semiconductor substrate; selectively forming at least one masking layer segment on the first blanket layer overlying selective ones of the MOS transistor precursor regions; depositing a second blanket layer of a second metal or semi-metal, or silicon, over the thus-formed structure; effecting alloying or silicidation reaction between contacting portions of the first and second blanket layers overlying the other ones of the transistor precursor regions; exposing and selectively removing the masking layer segment; and simultaneously patterning the alloyed and unalloyed/unsilicided portions of the first blanket layer to form metal-based gate electrodes of different composition. The invention also includes MOS and CMOS devices comprising differently composed metal-based gate electrodes.
摘要:
A test structure useful in controlling a polishing process of a semiconductor device is provided. The test structure is comprised of a structure layer, a first process layer, and interconnects. The first process layer is positioned above the structure layer and has a plurality of openings formed therein and extending at least partially therethrough to a preselected depth. At least a portion of the plurality of openings have a tapered region progressively narrowing in a direction from the first process layer toward the structure layer. The openings are spaced a preselected distance X apart. The interconnects are formed in the plurality of openings including the tapered region. Thus, as the process layer and interconnects are removed by the polishing process, the distance X increases, indicating the depth of the polishing process.
摘要:
A metal gate structure and method of forming the same introduces metal impurities into a first metal layer, made of TiN, for example. The impurities create a surface region of greater etch selectivity that prevents overetching of the TiN during the etching of an overlying tungsten gate during the formation of the metal gate structure. The prevention of the overetching of the TiN protects the gate oxide from undesirable degradation. The provision of aluminum or tantalum as the metal impurities provides adequate etch stopping capability and does not undesirably affect the work function of the TiN.
摘要:
Salicide processing is implemented with silicon nitride sidewall spacers by initially depositing a refractory metal, e.g., Ni, in the presence of nitrogen to form a metal nitride layer to prevent the reaction of the deposited metal with free Si in silicon nitride sidewall spacers, thereby avoiding bridging between the metal silicide layer on the gate electrode and the metal silicide layers on the source/drain regions of a semiconductor device.
摘要:
A method for implementing a self-aligned metal silicide gate is achieved by confining amorphous silicon within a recess overlying a channel and annealing to cause the amorphous silicon with its overlying metal to interact to form the self-aligned metal silicide gate. A gate dielectric layer formed of oxynitride or a nitride/oxide stack is formed on the bottom and sidewalls of the recess prior to depositing the silicon. The silicon is removed except for the portion of the silicon in the recess. The remaining portions of the metal are removed by manipulating the etch selectivity between the metal and the self-aligned metal silicide gate.
摘要:
A method for implementing a self-aligned low temperature metal silicide gate is achieved by confining a low temperature silicidation metal within a recess overlying a channel and annealing to cause the low temperature silicidation metal and its overlying silicon to interact to form the self-aligned low temperature metal silicide gate. A planarization step is performed to remove the remaining unreacted silicon by chemical mechanical polishing until no silicon is detected.
摘要:
A semiconductor arrangement and method of forming silicide regions includes conformally depositing a reducing material layer on a silicon substrate. A refractory metal layer is then conformally deposited on the reducing material layer. Annealing is then performed to form a refractory metal silicide layer on the silicon substrate. The metal silicide layer is a cobalt silicide and the reducing material layer includes at least one of tantalum, magnesium, aluminum or calcium. The reducing material reduces native oxide on a silicon substrate to allow the cobalt silicide to form.
摘要:
A semiconductor structure having a gate dielectric between a gate electrode and a semiconductor substrate is formed with a high dielectric metal oxide layer by replacing a sacrificial gate oxide. Embodiments include forming the metal oxide layer by applying a chemical solution deposition of a metalorganic on to an exposed surface of the substrate followed by pyrolizing the metalorganic residue to a metal oxide.
摘要:
Wire bonding to a Cu interconnect via and Al pad with reduced Al and Cu inter-diffusion is achieved by interposing a barrier layer between the Cu interconnect and Al pad. Embodiments include forming a barrier layer of Ti, Ta, W, alloy thereof or nitride thereof, between the Cu interconnect and the Al pad.
摘要:
A method of forming metal silicide in a semiconductor wafer with reduced junction leakage introduces an alloy at cobalt grain boundaries within a cobalt layer that overlays a silicon layer. The alloy element can be precipitated during deposition of the cobalt and the alloy element, or by an intermediate anneal after deposition. The cobalt layer and the silicon layer are then annealed to form metal silicide regions. By precipitating an alloy at the cobalt grain boundaries, cobalt diffusion at the grain boundaries is retarded during a first rapid thermal annealing step. Bulk diffusion is encouraged, and a more uniform silicide film with reduced interface roughness is produced. Since the interface roughness is reduced with the methods of the present invention, junction leakage is reduced. This allows shallower junctions to be fabricated, leading to devices with improved performance.