摘要:
Provided are methods of for deposition of SiN films via PEALD processes. Certain methods pertain to exposing a substrate surface to a silicon precursor to provide a silicon precursor at the substrate surface; purging excess silicon precursor; exposing the substrate surface to an ionized reducing agent; and purging excess ionized reducing agent to provide a film comprising SiN, wherein the substrate has a temperature of 23° C. to about 550° C.
摘要:
A flash memory device and methods of forming a flash memory device are provided. The flash memory device includes a doped silicon nitride layer having a dopant comprising carbon, boron or oxygen. The doped silicon nitride layer generates a higher number and higher concentration of nitrogen and silicon dangling bonds in the layer and provides an increase in charge holding capacity and charge retention time of the unit cell of a non-volatile memory device.
摘要:
A methods of forming a flash memory device are provided. The flash memory device comprises a silicon dioxide layer on a substrate and a silicon nitride layer that is formed on the silicon dioxide layer. The properties of the silicon nitride layer can be modified by any of: exposing the silicon nitride layer to ultraviolet radiation, exposing the silicon nitride layer to an electron beam, and by plasma treating the silicon nitride layer. A dielectric material is deposited on the silicon nitride layer and a conductive date is formed over the dielectric material. The flash memory device with modified silicon nitride layer provides an increase in charge holding capacity and charge retention time of the unit cell of a non-volatile memory device.
摘要:
A flash memory device and method of forming a flash memory device are provided. The flash memory device includes a silicon nitride layer having a compositional gradient in which the ratio of silicon to nitrogen varies through the thickness of the layer. The silicon nitride layer having a compositional gradient of silicon and nitrogen provides an increase in charge holding capacity and charge retention time of the unit cell of a non-volatile memory device.
摘要:
Methods are provided for forming a structure that includes an air gap. In one embodiment, a method is provided for forming a damascene structure comprises depositing a porous low dielectric constant layer by a method including reacting an organosilicon compound and a porogen-providing precursor, depositing a porogen-containing material, and removing at least a portion of the porogen-containing material, depositing an organic layer on the porous low dielectric constant layer by reacting the porogen-providing precursor, forming a feature definition in the organic layer and the porous low dielectric constant layer, filing the feature definition with a conductive material therein, depositing a mask layer on the organic layer and the conductive material disposed in the feature definition, forming apertures in the mask layer to expose the organic layer, removing a portion or all of the organic layer through the apertures, and forming an air gap adjacent the conductive material.
摘要:
A method for forming a compressive stress carbon-doped silicon nitride layer is provided. The method includes forming an initiation layer and a bulk layer thereon, wherein the bulk layer has a compressive stress of between about −0.1 GPa and about −10 GPa. The initiation layer is deposited from a gas mixture that includes a silicon and carbon-containing precursor and optionally a nitrogen and/or source but does not include hydrogen gas. The bulk layer is deposited from a gas mixture that includes a silicon and carbon-containing precursor, a nitrogen source, and hydrogen gas. The initiation layer is a thin layer that allows good transfer of the compressive stress of the bulk layer therethrough to an underlying layer, such as a channel of a transistor.
摘要:
A method for forming an integrated circuit is provided. In one embodiment, the method includes forming a stop layer comprising carbon doped silicon nitride on a gate region on a substrate, the gate region having a poly gate and one or more spacers formed adjacent the poly gate, forming a dielectric layer on the stop layer, and removing a portion of the dielectric layer above the gate region using a CMP process, wherein the stop layer is a strain inducing layer having a CMP removal rate that is less than the CMP removal rate of the dielectric layer and equal to or less than the CMP removal rate of the one or more spacers.
摘要:
Methods are provided for forming a structure that includes an air gap. In one embodiment, a method is provided for forming a damascene structure including depositing a porous low dielectric constant layer by a method including reacting an organosilicon compound and a porogen-providing precursor, depositing a porogen-containing material, and removing at least a portion of the porogen-containing material, depositing an organic layer on the porous low dielectric constant layer by reacting the porogen-providing precursor, forming a feature definition in the organic layer and the porous low dielectric constant layer, filing the feature definition with a conductive material therein, depositing a mask layer on the organic layer and the conductive material disposed in the feature definition, forming apertures in the mask layer to expose the organic layer, removing a portion or all of the organic layer through the apertures, and forming an air gap adjacent the conductive material.
摘要:
The present invention generally provides a method for forming a dielectric barrier with lowered dielectric constant, improved etching resistivity and good barrier property. One embodiment provides a method for processing a semiconductor substrate comprising flowing a precursor to a processing chamber, wherein the precursor comprises silicon-carbon bonds and carbon-carbon bonds, and generating a low density plasma of the precursor in the processing chamber to form a dielectric barrier film having carbon-carbon bonds on the semiconductor substrate, wherein the at least a portion of carbon-carbon bonds in the precursor is preserved in the low density plasma and incorporated in the dielectric barrier film.
摘要:
A method for forming a compressive stress carbon-doped silicon nitride layer is provided. The method includes forming an initiation layer and a bulk layer thereon, wherein the bulk layer has a compressive stress of between about −0.1 GPa and about −10 GPa. The initiation layer is deposited from a gas mixture that includes a silicon and carbon-containing precursor and optionally a nitrogen and/or source but does not include hydrogen gas. The bulk layer is deposited from a gas mixture that includes a silicon and carbon-containing precursor, a nitrogen source, and hydrogen gas. The initiation layer is a thin layer that allows good transfer of the compressive stress of the bulk layer therethrough to an underlying layer, such as a channel of a transistor.