Abstract:
A programmable equalizer and related method are provided. The equalizer includes a pair of current-setting field effect transistors (FETs) coupled in series with a pair of input FETs and a pair of load resistors, respectively, between a first voltage rail (Vdd) and a second voltage rail (ground). A programmable equalization circuit is coupled between the sources of the input FETs, comprising a plurality of selectable resistive paths and a variable capacitor, which could also be configured as a plurality of selectable capacitive paths. Each of the selectable resistive paths (as well as each of the selectable capacitive paths) include a selection FET for selectively coupling the corresponding resistive (or capacitive) path between the sources of the input FETs. In the case where one of the input FETs is biased with a reference gate voltage, the source of each selection FET is coupled to the source of such input FET.
Abstract:
In one embodiment, a system comprises a pre-driver circuit and a driver. The pre-driver circuit is powered by a first supply voltage, and configured to output a pre-drive signal. The driver comprises a pull-up NMOS transistor having a drain coupled to a second supply voltage, and a source coupled to an output of the driver, wherein the second supply voltage is lower than the first supply voltage by at least a threshold voltage of the pull-up NMOS transistor. The driver also comprises a drive circuit coupled to a gate of the pull-up NMOS transistor, wherein the drive circuit is configured to receive the pre-drive signal and to drive the gate of the pull-up NMOS transistor with a voltage approximately equal to the first supply voltage to drive the output of the driver to a high state depending on a logic state of the pre-drive signal.
Abstract:
Circuits and methods for Data Bus Inversion (DBI) are provided. In one example, the immediately previous value of the DBI bit affects the next value of the DBI bit. Specifically, in some instances, the value of the DBI bit is held to the immediately previous value of the DBI bit to limit the total number of transitions on a data bus.
Abstract:
Circuits for die-to-die clock distribution are provided. A system includes a transmit clock tree on a first die and a receive clock tree on a second die. The transmit clock tree and the receive clock tree are the same, or very nearly the same, so that the insertion delay for a given bit on the transmit clock tree is the same as an insertion delay for a bit corresponding to the given bit on the receive clock tree. While there may be clock skew from bit-to-bit within the same clock tree, corresponding bits on the different die experience the same clock insertion delays.
Abstract:
Metal thermal grounds are used for dissipating heat from integrated-circuit resistors. The resistors may be formed using a front end of line layer, for example, a titanium-nitride layer. A metal region (e.g., in a first metal layer) is located over the resistors to form a heat sink. An area of thermal posts connected to the metal region is also located over the resistor. The metal region can be connected to the substrate of the integrated circuit to provide a low impedance thermal path out of the integrated circuit.