Abstract:
In an aspect of the disclosure, a method, a computer-readable medium, and an apparatus for assigning feature colors for a multiple patterning process are provided. The apparatus receives integrated circuit layout information including a set of features and an assigned color of a plurality of colors for each feature of a first subset of features of the set of features. In addition, the apparatus performs color decomposition on a second subset of features to assign colors to features in the second subset of features. The second subset of features includes features in the set of features that are not included in the first subset of features with an assigned color.
Abstract:
A standard cell CMOS device includes metal oxide semiconductor transistors having gates formed from gate interconnects. The gate interconnects extend in a first direction. The device further includes power rails that provide power to the transistors. The power rails extend in a second direction orthogonal to the first direction. The device further includes M1 layer interconnects extending between the power rails. At least one of the M1 layer interconnects is coupled to at least one of the transistors. The M1 layer interconnects are parallel to the gate interconnects and extend in the first direction only.
Abstract:
A method of designing conductive interconnects includes determining a residual spacing value based at least in part on an integer multiple of a interconnect trace pitch and a designated cell height. The method also includes allocating the residual spacing to at least one interconnect trace width or interconnect trace space within the interconnect trace pitch.
Abstract:
Methods of fabricating middle of line (MOL) layers and devices including MOL layers. A method in accordance with an aspect of the present disclosure includes depositing a hard mask across active contacts to terminals of semiconductor devices of a semiconductor substrate. Such a method also includes patterning the hard mask to selectively expose some of the active contacts and selectively insulate some of the active contacts. The method also includes depositing a conductive material on the patterned hard mask and the exposed active contacts to couple the exposed active contacts to each other over an active area of the semiconductor devices.
Abstract:
A complementary fin field-effect transistor (FinFET) includes a p-type device having a p-channel fin. The p-channel fin may include a first material that is lattice mismatched relative to a semiconductor substrate. The first material may have a compressive strain. The FinFET device also includes an n-type device having an re-channel fin. The n-channel fin may include a second material having a tensile strain that is lattice mismatched relative to the semiconductor substrate. The p-type device and the n-type device cooperate to form the complementary FinFET device.