Abstract:
A photon pair generator includes a light source configured to emit light, and a nonlinear optical element configured to receive the light radiated from the light source and generate a quantum-entangled photon pair through spontaneous parametric down-conversion (SPDC), the nonlinear optical element including a polar material layer and a nonlinear material layer provided on the polar material layer.
Abstract:
Provided are nanostructures and optical devices having the nanostructures. The nanostructure may include a carbon nanomaterial layer, a nanopattern formed on the carbon nanomaterial layer, and a metal layer formed on a surface of the nanopattern. The nanostructure may be formed in a ring shape, and the metal layer may include a plurality of metal layers formed of different metals.
Abstract:
Provided is an image sensor including a sensor array including a plurality of light-sensors respectively including an optoelectronic device, the optoelectronic device including a first electrode, a second electrode spaced apart from the first electrode, and an active layer provided between the first electrode and the second electrode, the active layer including a plurality of quantum dot layers having different energy bands, and a circuit including circuits respectively connected to the plurality of light-sensors and configured to readout an optoelectronic signal generated from each of the plurality of light-sensors.
Abstract:
A light conversion device includes a substrate; a plurality of metal patterns provided on the substrate and separated from each other; a metal layer provided on the substrate and surrounding each of the plurality of metal patterns; a first slit positioned between the metal layer and each of the plurality of metal patterns and surrounding each of the plurality of metal patterns; and a light-emitting layer filling the first slit. The first slit and the metal pattern surrounded by the first slit are concentric. The metal layer and the plurality of metal patterns are aligned so that a first electric field enhancement occurs when a wave belonging to an invisible light band is incident to the first slit.
Abstract:
Provided is an image sensor including a sensor array including a plurality of light-sensors respectively including an optoelectronic device, the optoelectronic device including a first electrode, a second electrode spaced apart from the first electrode, and an active layer provided between the first electrode and the second electrode, the active layer including a plurality of quantum dot layers having different energy bands, and a circuit including circuits respectively connected to the plurality of light-sensors and configured to readout an optoelectronic signal generated from each of the plurality of light-sensors.
Abstract:
An optical filter, a spectrometer including the optical filter, and an electronic apparatus including the optical filter are disclosed. The optical filter includes a first reflector including a plurality of first structures that are periodically two-dimensionally arranged, each of the first structures having a ring shape, and a second reflector spaced apart from the first reflector and including a plurality of second structures that are periodically two-dimensionally arranged.
Abstract:
Provided are a light filter and a spectrometer including the light filter. The light filter includes at least one filter, wherein the at least one filter includes a liquid spectrum modulation layer having different transmittance spectra according to different positions on the at least one filter. The liquid spectrum modulation layer has different thicknesses according to the different positions on the at least one filter.
Abstract:
Provided are electromagnetic wave reflectors and optical devices including the same. An electromagnetic wave reflector may include a plurality of layers which have an aperiodic structure and/or thickness. The plurality of layers may satisfy a condition of spatial coherence with respect to electromagnetic waves. The electromagnetic wave reflector may include a plurality of first material layers including a first material having a first refractive index and a plurality of second material layers including a second material having a second refractive index different from the first refractive index. At least two of the plurality of first material layers may have different thicknesses. At least two of the plurality of second material layers may have different thicknesses. At least one of the plurality of first material layers and at least one of the plurality of second material layers may have different thicknesses.
Abstract:
A semiconductor laser resonator configured to generate a laser beam includes a gain medium layer including a semiconductor material and comprising at least one protrusion formed by at least one trench to protrude in an upper portion of the gain medium layer. In the semiconductor laser resonator, the at least one protrusion is configured to confine the laser beam as a standing wave in the at least one protrusion.
Abstract:
An apparatus for and a method of measuring blood pressure are provided. The apparatus includes a sensor configured to radiate light to a body part, and detect a light signal that is changed due to the body part. The apparatus further includes a signal processor configured to determine a bio signal based on the light signal; and a central processing unit configured to determine a blood pressure based on the bio signal and a blood pressure estimation algorithm.