Abstract:
An integrated electronic detector operates to detecting a variation in potential on an input terminal. The detector includes a MOS transistor having a drain forming an output. Variation in drain current is representative of the variation in potential. A bipolar transistor has a base forming the input terminal and a collector electrically connected to the gate of the MOS transistor. The detector has a first configuration in which the bipolar transistor is conducting and the MOS transistor is turned off. The detector has a second configuration in which the bipolar transistor is turned off and the MOS transistor is in a sub-threshold operation. Transition of the detector from the first configuration to the second configuration occurs in response to the variation in potential.
Abstract:
Elongated fins of a first semiconductor material are insulated from and formed over an underlying substrate layer (of either SOI or bulk type). Elongated gates of a second semiconductor material are then formed to cross over the elongated fins at channel regions, and the gate side walls are covered by sidewall spacers. A protective material is provided to cover the underlying substrate layer and define sidewall spacers on side walls of the elongated fins between the elongated gates. The first semiconductor material and insulating material of the elongated fins located between the protective material sidewall spacers (but not under the elongated gates) is removed to form trenches aligned with the channel regions. Additional semiconductor material is then epitaxially grown inside each trench between the elongated gates to form source-drain regions adjacent the channel regions formed by the elongated fins of the first semiconductor material located under the elongated gates.
Abstract:
A method of manufacturing bistable strips having different curvatures, each strip including a plurality of portion of layers of materials, wherein at least one specific layer portion is deposited by a plasma spraying method in conditions different for each of the strips.
Abstract:
A photonic device includes a first region having a first doping type, and a second region having a second doping type, where the first region and the second region contact to form a vertical PN junction. The first region includes a silicon germanium (SiGe) region having a gradual germanium concentration.
Abstract:
A photonic device includes a first region having a first doping type, and a second region having a second doping type, where the first region and the second region contact to form a vertical PN junction. The first region includes a silicon germanium (SiGe) region having a gradual germanium concentration.
Abstract:
A dual gate ion sensitive field effect transistor (ISFET) includes a first bias voltage node coupled to a back gate of the ISFET and a second bias voltage node coupled to a control gate of the ISFET. A bias voltage generator circuit is configured to generate a back gate voltage having a first magnitude and a first polarity for application to the first bias voltage node. The bias voltage generator circuit is further configured to generate a control gate voltage having a second magnitude and a second polarity for application to the second bias voltage node. The second polarity is opposite the first polarity.
Abstract:
An integrated electronic detector operates to detecting a variation in potential on an input terminal. The detector includes a MOS transistor having a drain forming an output. Variation in drain current is representative of the variation in potential. A bipolar transistor has a base forming the input terminal and a collector electrically connected to the gate of the MOS transistor. The detector has a first configuration in which the bipolar transistor is conducting and the MOS transistor is turned off. The detector has a second configuration in which the bipolar transistor is turned off and the MOS transistor is in a sub-threshold operation. Transition of the detector from the first configuration to the second configuration occurs in response to the variation in potential.
Abstract:
An integrated circuit chip cooling device includes a network of micropipes. A first pipe portion and a second pipe portion of the network are connected by at least one valve. The valve is formed of a bilayer strip. In response to change in temperature, the shape of the bilayer strip changes to move the valve from a substantially closed position to an open position. In one configuration, the change is irreversible. In another configuration, the change is reversible in response to an opposite change in temperature.
Abstract:
Elongated fins of a first semiconductor material are insulated from and formed over an underlying substrate layer. Elongated gates of a second semiconductor material are then formed to cross over the elongated fins at channel regions, and the gate side walls are covered by sidewall spacers. A protective material is provided to cover the underlying substrate layer and define sidewall spacers on side walls of the elongated fins between the elongated gates. The first semiconductor material and insulating material of the elongated fins located between the protective material sidewall spacers (but not under the elongated gates) is removed to form trenches aligned with the channel regions. Additional semiconductor material is then epitaxially grown inside each trench between the elongated gates to form source-drain regions adjacent the channel regions formed by the elongated fins of the first semiconductor material located under the elongated gates.
Abstract:
An integrated circuit includes a substrate with an isolation region that bounds a zone. A transistor includes a concave semiconductor region that is supported by the isolation region in a first direction and has a concavity turned to face towards the zone. The concave semiconductor region contains drain, source and channel regions. A gate region for the transistor possesses a concave portion overlapping a portion of the concave semiconductor region. A dielectric region is located between the zone of the substrate and the concave semiconductor region.