Abstract:
A semiconductor integrated device is provided with: a die having a body of semiconductor material with a front surface, and an active area arranged at the front surface; and a package having a support element carrying the die at a back surface of the body, and a coating material covering the die. The body includes a mechanical decoupling region, which mechanically decouples the active area from mechanical stresses induced by the package; the mechanical decoupling region is a trench arrangement within the body, which releases the active area from an external frame of the body, designed to absorb the mechanical stresses induced by the package.
Abstract:
A PMUT device includes a membrane element extending perpendicularly to a first direction and configured to generate and receive ultrasonic waves by oscillating about an equilibrium position. At least two piezoelectric elements are included, with each one located over the membrane element along the first direction and configured to cause the membrane element to oscillate when electric signals are applied to the piezoelectric element, and generate electric signals in response to oscillations of the membrane element. The membrane element has a lobed shape along a plane perpendicular to the first direction, with the lobed shape including at least two lobes. The membrane element includes for each piezoelectric member a corresponding membrane portion including a corresponding lobe, with each piezoelectric member being located over its corresponding membrane portion.
Abstract:
A PMUT device includes a membrane element adapted to generate and receive ultrasonic waves by oscillating, about an equilibrium position, at a corresponding resonance frequency. A piezoelectric element is located over the membrane element along a first direction and configured to cause the membrane element to oscillate when electric signals are applied to the piezoelectric element, and generate electric signals in response to oscillations of the membrane element. A damper is configured to reduce free oscillations of the membrane element, and the damper includes a damper cavity surrounding the membrane element, and a polymeric member having at least a portion over the damper cavity along the first direction.
Abstract:
The MEMS actuator is formed by a body, which surrounds a cavity and by a deformable structure, which is suspended on the cavity and is formed by a movable portion and by a plurality of deformable elements. The deformable elements are arranged consecutively to each other, connect the movable portion to the body and are each subject to a deformation. The MEMS actuator further comprises at least one plurality of actuation structures, which are supported by the deformable elements and are configured to cause a translation of the movable portion greater than the deformation of each deformable element. The actuation structures each have a respective first piezoelectric region.
Abstract:
A pressure sensor with double measuring scale includes: a flexible body designed to undergo deflection as a function of a the pressure; piezoresistive transducers for detecting the deflection; a first focusing region designed to concentrate, during a first operating condition, a first value of the pressure in a first portion of the flexible body so as to generate a deflection of the first portion of the flexible body; and a second focusing region designed to concentrate, during a second operating condition, a second value of said pressure in a second portion of the flexible body so as to generate a deflection of the second portion of the flexible body. The piezoresistive transducers correlate the deflection of the first portion of the flexible body to the first pressure value and the deflection of the second portion of the flexible body to the second pressure value.
Abstract:
The MEMS actuator is formed by a substrate, which surrounds a cavity; by a deformable structure suspended on the cavity; by an actuation structure formed by a first piezoelectric region of a first piezoelectric material, supported by the deformable structure and configured to cause a deformation of the deformable structure; and by a detection structure formed by a second piezoelectric region of a second piezoelectric material, supported by the deformable structure and configured to detect the deformation of the deformable structure.
Abstract:
Ejection device for fluid, comprising a solid body including: first semiconductor body including a chamber for containing the fluid, an ejection nozzle in fluid connection with the chamber, and an actuator operatively connected to the chamber to generate, in use, one or more pressure waves in the fluid such as to cause ejection of the fluid from the ejection nozzle; and a second semiconductor body including a channel for feeding the fluid to the chamber, coupled to the first semiconductor body, in such a way that the channel is in fluid connection with the chamber. The second semiconductor body integrates a damping cavity over which extends a damping membrane, the damping cavity and the damping membrane extending laterally to the channel for feeding the fluid.
Abstract:
A pressure sensor with double measuring scale includes: a flexible body designed to undergo deflection as a function of a the pressure; piezoresistive transducers for detecting the deflection; a first focusing region designed to concentrate, during a first operating condition, a first value of the pressure in a first portion of the flexible body so as to generate a deflection of the first portion of the flexible body; and a second focusing region designed to concentrate, during a second operating condition, a second value of said pressure in a second portion of the flexible body so as to generate a deflection of the second portion of the flexible body. The piezoresistive transducers correlate the deflection of the first portion of the flexible body to the first pressure value and the deflection of the second portion of the flexible body to the second pressure value.