摘要:
A semiconductor structure includes a plurality of conductive lines formed within an interlevel dielectric (ILD) layer and a non-planar cap layer formed over the ILD layer and the conductive lines, wherein the cap layer is raised with respect to the conductive lines at locations between the conductive lines.
摘要:
A stacked interconnect structure to connect a first layer copper line with a second layer copper line and method of making the same includes depositing a barrier layer over the inner surfaces of a via extending through a first dielectric layer between the first and second layer copper lines. The first barrier layer provides a barrier to copper diffusion into the dielectric layer. The first barrier layer is then selectively etched from the bottom surface of the via, after which a second barrier layer is deposited over the vertical and bottom surfaces of the via. The second barrier layer also provides a barrier to the diffusion of copper, but is less resistive than the first barrier, and ensure wettability of the copper.
摘要:
Structure providing more reliable fuse blow location, and method of making the same. A vertical metal fuse blow structure has, prior to fuse blow, an intentionally damaged portion of the fuse conductor. The damaged portion helps the fuse blow in a known location, thereby decreasing the resistance variability in post-blow circuits. At the same time, prior to fuse blow, the fuse structure is able to operate normally. The damaged portion of the fuse conductor is made by forming an opening in a cap layer above a portion of the fuse conductor, and etching the fuse conductor. Preferably, the opening is aligned such that the damaged portion is on the top corner of the fuse conductor. A cavity can be formed in the insulator adjacent to the damaged fuse conductor. The damaged fuse structure having a cavity can be easily incorporated in a process of making integrated circuits having air gaps.
摘要:
E-fuse structures in back end of the line (BEOL) interconnects and methods of manufacture are provided. The method includes forming an interconnect via in a substrate in alignment with a first underlying metal wire and forming an e-fuse via in the substrate, exposing a second underlying metal wire. The method further includes forming a defect with the second underlying metal wire and filling the interconnect via with metal and in contact with the first underlying metal wire thereby forming an interconnect structure. The method further includes filling the e-fuse via with the metal and in contact with the defect and the second underlying metal wire thereby forming an e-fuse structure.
摘要:
A method for capping lines includes forming a metal film layer on a copper line by a selective deposition process, the copper line disposed in a dielectric substrate, wherein the depositing also results in the deposition of stray metal material on the surface of the dielectric substrate, and etching with an isotropic etching process to remove a portion of the metal film layer and the stray metal material on the surface of the dielectric substrate, wherein the metal film layer is deposited at an initial thickness sufficient to leave a metal film layer cap remaining on the copper line following the removal of the stray metal material.
摘要:
An interconnect structure for an integrated circuit (IC) device includes a metal line formed within a dielectric layer, the metal line having one or more vertical diffusion barriers therein; wherein the one or more vertical diffusion barriers correspond to a liner material of a via formed above the metal line, with the via extending completely through a thickness of the metal line such that a bottom most portion of the via comprises a portion of the metal line.
摘要:
A method of forming a semiconductor device includes patterning a photoresist layer formed over a homogeneous semiconductor device layer to be etched; subjecting the semiconductor device to an implant process that selectively implants a sacrificial etch stop layer that is self-aligned in accordance with locations of features to be etched within the homogeneous semiconductor device layer, and at a desired depth for the features to be etched; etching a feature pattern defined by the patterned photoresist layer into the homogenous semiconductor device layer, stopping on the implanted sacrificial etch stop layer; and removing remaining portion of the implanted sacrificial etch stop layer prior to filling the etched feature pattern with a fill material.
摘要:
A method of forming contacts for semiconductor devices, the method including depositing an inter-level dielectric (ILD) over a plurality of gate stacks, in which the divots within the inter-level dielectric layer are defined by the spaces between the gate stacks, filling the divots with an initial fill material, depositing a masking material on the dielectric over the gate stacks, and selectively etching the fill material to form contact vias. The fill material may be a self-assembly material such as a multi-block copolymer in which the blocks self organize vertically within the divots, so that a selective etch of the block material will remove the vertically organized blocks from the divot, but leave at least one block over the gate regions. In another embodiment, the fill material may be a metal, and the masking material may be a parylene based polymer.
摘要:
The present invention provides a method for forming an interconnect on a semiconductor substrate 100. The method includes forming an opening 230 over an inner surface of the opening 130, the depositing forming a reentrant profile near a top portion of the opening 130. A portion of barrier 230 is etched, which removes at least a portion of the barrier 230 to reduce the reentrant profile. The etching also removes at least a portion of the barrier 230 layer at the bottom of the opening 130.
摘要:
Structure providing more reliable fuse blow location, and method of making the same. A vertical metal fuse blow structure has, prior to fuse blow, an intentionally damaged portion of the fuse conductor. The damaged portion helps the fuse blow in a known location, thereby decreasing the resistance variability in post-blow circuits. At the same time, prior to fuse blow, the fuse structure is able to operate normally. The damaged portion of the fuse conductor is made by forming an opening in a cap layer above a portion of the fuse conductor, and etching the fuse conductor. Preferably, the opening is aligned such that the damaged portion is on the top corner of the fuse conductor. A cavity can be formed in the insulator adjacent to the damaged fuse conductor. The damaged fuse structure having a cavity can be easily incorporated in a process of making integrated circuits having air gaps.