摘要:
One embodiment of the present invention provides a system that supports exception handling through use of a conditional trap instruction. The system supports a head thread that executes program instructions and a speculative thread that speculatively executes program instructions in advance of the head thread. During operation, the system uses the speculative thread to execute code, which includes an instruction that can cause an exception condition. After the instruction is executed, the system determines if the instruction caused the exception condition. If so, the system writes an exception condition indicator to a register. At some time in the future, the system executes a conditional trap instruction which examines a value in the register. If the value in the register is an exception condition indicator, the system executes a trap handling routine to handle the exception condition. Otherwise, the system proceeds with execution of the code. In one embodiment of the present invention, prior to executing the instruction, the system allows a compiler to optimize a program containing the instruction. This optimization process includes scheduling an exception testing instruction associated with the instruction to occupy a free instruction slot following the instruction. This exception testing instruction determines if the instruction causes the exception condition. In one embodiment of the present invention, the trap handling routine triggers a rollback operation to undo operations performed by the speculative thread.
摘要:
One embodiment of the present invention provides a processor that supports multiple-issue execution. This processor includes a register file, which contains an array of memory cells, wherein the memory cells contain bits for architectural registers of the processor. The register file also includes multiple read ports and multiple write ports to support multiple-issue execution. During operation, if multiple read ports simultaneously read from a given register, the register file is configured to: read each bit of the given register out of the array of memory cells through a single bitline associated with the bit; and to use a driver located outside of the array of memory cells to drive the bit to the multiple read ports. In this way, each memory cell only has to drive a single bitline (instead of multiple bitlines) during a multiple-port read operation, thereby allowing memory cells to use smaller and more power-efficient drivers for read operations.
摘要:
One embodiment of the present invention provides a system that synchronizes threads on a multi-threaded processor. The system starts by executing instructions from a multi-threaded program using a first thread and a second thread. When the first thread reaches a predetermined location in the multi-threaded program, the first thread executes a Start-Transactional-Execution (STE) instruction to commence transactional execution, wherein the STE instruction specifies a location to branch to if transactional execution fails. During the subsequent transactional execution, the first thread accesses a mailbox location in memory (which is also accessible by the second thread) and then executes instructions that cause the first thread to wait. When the second thread reaches a second predetermined location in the multi-threaded program, the second thread signals the first thread by accessing the mailbox location, which causes the transactional execution of the first thread to fail, thereby causing the first thread to resume non-transactional execution from the location specified in the STE instruction. In this way, the second thread can signal to the first thread without the first thread having to poll a shared variable.
摘要:
A processor includes a device providing a throttling power output signal. The throttling power output signal is used to determine when to logically throttle the power consumed by the processor. At least one core in the processor includes a pipeline having a decode pipe; and a logical power throttling unit coupled to the device to receive the output signal, and coupled to the decode pipe. Following the logical power throttling unit receiving the power throttling output signal satisfying a predetermined criterion, the logical power throttling unit causes the decode pipe to reduce an average number of instructions decoded per processor cycle without physically changing the processor cycle or any processor supply voltages.
摘要:
Embodiments of the present invention provide a system that executes program code in a processor. The system starts by executing the program code in a normal mode using a primary strand while concurrently executing the program code ahead of the primary strand using a subordinate strand in a scout mode. Upon resolving a branch using the subordinate strand, the system records a resolution for the branch in a speculative branch resolution table. Upon subsequently encountering the branch using the primary strand, the system uses the recorded resolution from the speculative branch resolution table to predict a resolution for the branch for the primary strand. Upon determining that the resolution of the branch was mispredicted for the primary strand, the system determines that the subordinate strand mispredicted the branch. The system then recovers the subordinate strand to the branch and restarts the subordinate strand executing the program code.
摘要:
One embodiment of the present invention provides a system which performs simultaneous speculative threading. The system staffs by executing instructions in normal execution mode using a first thread. Upon encountering a data-dependent stall condition, the first thread generates an architectural checkpoint and commences execution of instructions in execute-ahead mode. During execute-ahead mode, the first thread executes instructions that can be executed and defers instructions that cannot be executed into a deferred queue. When the data dependent stall condition has been resolved, the first thread generates a speculative checkpoint and continues execution in execute-ahead mode. At the same time, the second thread commences execution in a deferred mode. During execution in the deferred mode, the second thread executes instructions deferred by the first thread.
摘要:
One embodiment of the present invention provides a system that facilitates interleaved execution of a head thread and a speculative thread within a single processor pipeline. The system operates by executing program instructions using the head thread, and by speculatively executing program instructions in advance of the head thread using the speculative thread, wherein the head thread and the speculative thread execute concurrently through time-multiplexed interleaving in the single processor pipeline.
摘要:
A technique for operating a computing apparatus includes allocating a working register file entry corresponding to a register in a working register file when an instruction referencing the register proceeds through a particular stage of the computing apparatus. The technique maintains the working register file entry until at least a predetermined number of subsequent instructions have similarly proceeded through the particular stage.
摘要:
Mechanisms have been developed for providing great flexibility in processor instruction handling, sequencing and execution. In particular, it has been discovered that a programmable pre-decode mechanism can be employed to alter the behavior of a processor. For example, pre-decode hints for sequencing, synchronization or speculation control may altered or mappings of ISA instructions to native instructions or operation sequences may be altered. Such techniques may be employed to adapt a processor implementation (in the field) to varying memory models, implementations or interfaces or to varying memory latencies or timing characteristics. Similarly, such techniques may be employed to adapt a processor implementation to correspond to an extended/adapted instruction set architecture. In some realizations, instruction pre-decode functionality may be adapted at processor run-time to handle or mitigate a timing, concurrency or speculation issue. In some realizations, operation of pre-decode may be reprogrammed post-manufacture, at (or about) initialization, or at run-time.
摘要:
One embodiment of the present invention provides a system that facilitates storing results of resolvable branches during speculative execution, and then using the results to predict the same branches during non-speculative execution. During operation, the system executes code within a processor. Upon encountering a stall condition, the system speculatively executes the code from the point of the stall, without committing results of the speculative execution to the architectural state of the processor. Upon encountering a branch instruction that is resolved during speculative execution, the system stores the result of the resolved branch in a branch queue, so that the result can be subsequently used to predict the branch during non-speculative execution.