Abstract:
A coating technique and a priming material are provided. In an exemplary embodiment, the coating technique includes receiving a substrate and applying a priming material to the substrate. The applying of the priming material may include rotating the substrate to disperse the priming material radially on the substrate. In the embodiment, the priming material includes a solvent with at least six carbon atoms per molecule. A film-forming material is applied to the substrate on the priming material, and the application includes rotating the substrate to disperse the film-forming material radially on the substrate. The priming material and the film-forming material are evaporated to leave a component of the film-forming material in a solid form. In various embodiments, the priming material is selected based on at least one of an evaporation rate, a viscosity, or an intermolecular force between the priming material and the film-forming material.
Abstract:
A method for semiconductor manufacturing includes receiving a device that includes a substrate and a first layer disposed over the substrate, wherein the first layer includes a trench. The method further includes applying a first material over the first layer and filling in the trench, wherein the first material contains a matrix and a porogen that is chemically bonded with the matrix. The method further includes curing the first material to form a porous material layer. The porous material layer has a first portion and a second portion. The first portion is disposed in the trench. The second portion is disposed over the first layer. The first and second portions contain substantially the same percentage of each of Si, O, and C. The first and second portions contain substantially the same level of porosity.
Abstract:
A patternable layer is formed over a substrate. A photo-sensitive layer is formed over the patternable layer. The photo-sensitive layer contains an additive. The additive contains at least a floating control chemical and a volume control chemical. A spin drying or a baking process is performed to the photo-sensitive layer. The floating control chemical causes the additive to rise upward during the spin drying or baking process. Thereafter, as a part of an extreme ultraviolet (EUV) lithography process, the photo-sensitive layer is exposed. One or more outgassing chemicals are generated inside the photo-sensitive layer during the exposing. The volume control chemical is sufficiently voluminous and dense to trap the outgassing chemicals inside the photo-sensitive layer.
Abstract:
An anti-reflective coating (ARC) composition for use in lithography patterning and a method of using the same is disclosed. In an embodiment, the ARC composition comprises a polymer having a chromophore; an acid labile group (ALG), more than 5% by weight; a thermal acid generator; and an optional crosslinker. The method includes applying the ARC composition over a substrate; crosslinking the polymer to form an ARC layer; cleaving the ALG of the ARC layer to reduce a film density of the ARC layer; forming a resist layer over the ARC layer, patterning the resist layer, and etching the ARC layer. Due to reduced film density, the ARC layer has a high etching rate, thereby preserving the critical dimension (CD) of the resist pattern during the etching process.
Abstract:
A method for forming an interconnect structure includes forming a patterned layer over a substrate, the patterned layer having an opening therein. A dielectric material is filled in the opening. The dielectric material has a precursor and a solvent, the solvent having a boiling point temperature greater than a precursor cross-linking temperature. A thermal treatment is performed on the dielectric material to form a dielectric layer.
Abstract:
A system and method for anti-reflective layers is provided. In an embodiment the anti-reflective layer comprises a floating component in order to form a floating region along a top surface of the anti-reflective layer after the anti-reflective layer has dispersed. The floating component may be a floating cross-linking agent, a floating polymer resin, or a floating catalyst. The floating cross-linking agent, the floating polymer resin, or the floating catalyst may comprise a fluorine atom.
Abstract:
A system and method for reducing defects in photoresist processing is provided. An embodiment comprises cleaning the photoresist after development using an alkaline environment. The alkaline environment may comprise a neutral solvent and an alkaline developer. The alkaline environment will modify the attraction between residue leftover from development and a surface of the photoresist such that the surfaces repel each other, making the removal of the residue easier. By removing more residue, there will be fewer defects in the photolithographic process.
Abstract:
In accordance with an embodiment a bottom anti-reflective layer comprises a surface energy modification group which modifies the surface energy of the polymer resin to more closely match a surface energy of an underlying material in order to help fill gaps between structures. The surface energy of the polymer resin may be modified by either using a surface energy modifying group or else by using an inorganic structure.
Abstract:
In accordance with an embodiment, a method of filtering a process fluid such as a negative tone developer is provided. The negative tone developer is introduced to a filter membrane that comprises a fluorine-based polymer. The negative tone developer is then filtered through the filter membrane. By using these materials and methods, polyethylene from the filter membrane will not contaminate the photoresist during development and reduce defects that arise from polyethylene contamination.
Abstract:
A photoresist includes a group which will decompose that is attached to a hydrocarbon backbone at multiple points along the hydrocarbon chain. With such an attachment, the group which will decompose will cleave from one point in order to generate a desired shift in polarity while still remaining bonded to the hydrocarbon backbone. This prevents the group which will decompose from leaving the photoresist, thereby reducing or eliminating volume losses associated with exposure and post-exposure baking.