Abstract:
A method for producing a semiconductor chip is a method for producing a semiconductor chip that includes a substrate, a conductive portion formed on the substrate, and a microbump formed on the conductive portion, which includes a smooth surface formation process of forming a smooth surface on the microbump, and the smooth surface formation process includes a heating process of causing a reducing gas to flow in an inert atmosphere into a space where the semiconductor chips are arranged and heated at or higher than a temperature of a melting point of the microbump, and in the heating process, a pressure application member is mounted on the microbump and among principal surfaces of the pressure application member, a principal surface that contacts the microbump is a flat surface.
Abstract:
A method for producing a semiconductor package is a method for producing a semiconductor package in which a plurality of semiconductor chips, each of which includes a substrate, conductive portions formed on the substrate, and microbumps formed on the conductive portions, are laminated, which includes a heating process of causing a reducing gas to flow in an inert atmosphere into a space where the semiconductor chips are arranged and heated at or higher than a temperature of a melting point of the microbump, and in the heating process, a pressure application member is mounted on the microbump.
Abstract:
Disclosed herein is a wiring component that includes a base material and a planar coil pattern formed on the base material. The planar coil pattern includes a coil wiring portion having one end, other end, and first to third connecting positions, the second connecting position being closer to the other end compared with the first connecting position, the third connecting position being closer to the one end compared with the second connecting position; a power-feed wiring portion connected to the first connecting position; and a connection wiring portion that short-circuits the second connecting position and the third connecting position. A cross-section structure of the planar coil pattern has a base resin layer formed on the base material, and a conductive layer formed on the base resin layer.
Abstract:
A method for producing a semiconductor package in which a plurality of semiconductor chips, each of which includes a substrate, conductive portions formed on the substrate, and microbumps formed on the conductive portions, are laminated, which includes a smooth surface formation process of forming a smooth surface on the microbump, a lamination process of laminating three or more of the semiconductor chips by overlaying the microbump of one of the semiconductor chips on the microbump of another one of the semiconductor chips, and a bonding process of bonding the semiconductor chips to each other via the microbumps by heating to melt the microbumps, in which in the lamination process, of one of the semiconductor chips and another one of the semiconductor chips, the smooth surface is formed on at least one of the microbump, and one of the microbump contacts another one of the microbump on the smooth surface.
Abstract:
The present invention relates to a terminal structure comprising; a base material 10; an external electrode 20 formed on the base material; an insulating coating layer 30 formed on the base material and on the electrode and having an opening exposing at least part of the electrode; an under-bump metal layer 70 filling the opening and covering part of the insulating coating layer; and a dome-shaped bump 85 covering the under-bump metal layer, wherein in a cross section along a lamination direction, the under-bump metal layer has a convex shape toward the bump, and the thickness Tu0 of the under-bump metal layer at a center of the opening is equal to or greater than the thickness Tu1 of the under-bump metal layer at an end portion of the opening.
Abstract:
The present invention relates to a terminal structure comprising: a base material 10; an external electrode 20 formed on the base material; an insulating coating layer 30 formed on the base material and on the electrode and having an opening exposing at least part of the electrode; an under-bump metal layer 70 filling the opening and covering part of the insulating coating layer; and a dome-shaped bump 85 covering the under-bump metal layer, wherein in a cross section along a lamination direction, a height Hbm at which the bump has a maximum diameter (Lbm) is lower than a maximum height Hu of the under-bump metal layer.
Abstract:
A high-frequency transmission line having low alternate current (AC) resistance is provided. One aspect of the present invention is a high-frequency transmission line disposed along a surface of an insulating support, wherein, letting F [Hz] be the frequency of an AC electric signal transmitted by the high-frequency transmission line and Ms [Wb/m] be the saturation magnetization per unit area, the frequency value F and the saturation magnification value per unit area Ms satisfy the following expression (1): Ms≦(1.5×102)/F+5.7×10−8 (1).
Abstract translation:提供具有低交流(AC)电阻的高频传输线。 本发明的一个方面是沿着绝缘支撑体的表面布置的高频传输线,其中,使F [Hz]为由高频传输线发送的AC电信号的频率,Ms [Wb / m]为每单位面积的饱和磁化强度,每单位面积Ms的频率值F和饱和倍率值满足下式(1):Ms≦̸(1.5×102)/ F +5.7×10-8(1)。