Abstract:
An electroconductive substrate, including: a base material; a foundation layer disposed on the base material; a trench formation layer disposed on the foundation layer, and an electroconductive pattern layer including metal plating. A trench including a bottom surface to which the foundation layer is exposed, is formed. The trench is filled with the electroconductive pattern layer. The foundation layer includes a mixed region which is formed from a surface of the foundation layer on the electroconductive pattern layer side towards the inside thereof, and contains metal particles which contain a metal configuring the electroconductive pattern layer, and enter the foundation layer.
Abstract:
Disclosed herein is a method for manufacturing a planar coil, the method including forming a base conductive layer on a base material, the base conductive layer including: a coil wiring portion having one end, other end, and first to third connecting positions, the second connecting position being closer to the other end compared with the first connecting position, the third connecting position being closer to the one end compared with the second connecting position; a power-feed wiring portion that connects the first connecting position with an external power source; and a connection wiring portion that short-circuits the second connecting position and the third connecting position; forming a wiring conductive layer on the base conductive layer by electrolytic plating by feeding power from the external power source; and removing the power-feed wiring portion and the connection wiring portion.
Abstract:
A junction structure for electronic device having an excellent bonding strength is provided. A junction structure for electronic device in accordance with one aspect of the present invention includes a first metal layer containing nickel and a second metal layer containing gold, tin, and nickel, while the second metal layer includes an AuSn eutectic phase.
Abstract:
A preferred terminal structure comprises a base material; an electrode formed on the base material; an insulating covering layer formed on the base material and on the electrode and having an opening exposing at least part of the electrode; an under bump metal layer containing Ni, formed in a region in the opening on the electrode so that an upper surface of the metal layer is at a position lower than an upper surface of the insulating covering layer in a peripheral edge portion of the opening; and a dome-shaped bump containing Sn and Ti, formed in a region in the opening on the under bump metal layer, wherein an end portion of a boundary between the under bump metal layer and the bump is in contact with an inner wall of the opening portion in the insulating covering layer.
Abstract:
The electronic device includes a terminal structure and a printed circuit board including the terminal structure. The terminal structure includes a solder-joint conductor region placed on a wiring conductor, an intermediate layer contacting with the conductor region, and a solder region contacting with the intermediate layer. The intermediate layer includes an intermetallic compound including tin and at least one of copper and nickel as principal components. When the indentation elastic modulus of the conductor region is E1 and the indentation elastic modulus of the intermediate layer is E2, the ratio of E1 to E2 is equal to or more than 0.8 and equal to or less than 1.5.
Abstract:
A method of producing an electroconductive substrate including a base material, and an electroconductive pattern disposed on one main surface side of the base material includes: a step of forming a trench including a bottom surface to which a foundation layer is exposed, and a lateral surface which includes a surface of a trench formation layer, according to an imprint method; and a step of forming an electroconductive pattern layer by growing metal plating from the foundation layer which is exposed to the bottom surface of the trench.
Abstract:
A magnetic head device with high joint strength in an arm and a suspension is provided. The magnetic head device comprises an arm, a suspension overlapping with a leading end part of the arm, a slider located at a leading end part of the suspension, and a joint part that is located between the leading end part of the arm and the suspension and that joins the arm and the suspension, while the joint part includes Sn.
Abstract:
One aspect of an electronic component is an electronic component comprising an element body having a mounting surface and a plurality of side faces, the electronic component further comprising a first terminal electrode formed on the mounting surface and one of the plurality of side faces, a second terminal electrode formed on the mounting surface and another side face in the plurality of side faces, a metal film disposed on a surface of a mounting part of the first and second terminal electrodes formed on the mounting surface, and an oxide film covering at least a part of surfaces of side face parts of the first and second terminal electrodes formed on the side faces.
Abstract:
The electronic device includes a terminal structure and a printed circuit board including the terminal structure. The terminal structure includes a solder-joint conductor region placed on a wiring conductor, an intermediate layer contacting with the conductor region, and a solder region contacting with the intermediate layer. The intermediate layer includes an intermetallic compound including tin and at least one of copper and nickel as principal components. When the indentation elastic modulus of the conductor region is E1 and the indentation elastic modulus of the intermediate layer is E2, the ratio of E1 to E2 is equal to or more than 0.8 and equal to or less than 1.5.
Abstract:
A sheet material includes a resin layer containing a binder and polypyrrole particles, an electroless plating film provided on the side of one main surface of the resin layer and including first electroless plating films and a second electroless plating film, and a transparent base material provided on the side of the other main surface of the resin layer.