Abstract:
Methods, apparatus, systems and articles of manufacture to reduce bank pressure using aggressive write merging are disclosed. An example apparatus includes a first cache storage; a second cache storage; a store queue coupled to at least one of the first cache storage and the second cache storage and operable to: receive a first memory operation; process the first memory operation for storing the first set of data in at least one of the first cache storage and the second cache storage; receive a second memory operation; and prior to storing the first set of data in the at least one of the first cache storage and the second cache storage, merge the first memory operation and the second memory operation.
Abstract:
Disclosed embodiments include a data processing apparatus having a processing core, a memory, and a streaming engine. The streaming engine is configured to receive a plurality of data elements stored in the memory and to provide the plurality of data elements as a data stream to the processing core, and includes an address generator to generate addresses corresponding to locations in the memory, a buffer to store the data elements received from the locations in the memory corresponding to the generated addresses, and an output to supply the data elements received from the memory to the processing core as the data stream.
Abstract:
This invention is data processing apparatus and method. Data is protecting from corruption using an error correction code by generating an error correction code corresponding to the data. In this invention the data and the corresponding error correction code are carried forward to another set of registers without regenerating the error correction code or using the error correction code for error detection or correction. Only later are error correction detection and correction actions taken. The differing data/error correction code registers may be in differing pipeline phases in the data processing apparatus. This invention forwards the error correction code with the data through the entire datapath that carries the data. This invention provides error protection to the whole datapath without requiring extensive hardware or additional time.
Abstract:
A method to eliminate the delay of a block invalidate operation in a multi CPU environment by overlapping the block invalidate operation with normal CPU accesses, thus making the delay transparent. A range check is performed on each CPU access while a block invalidate operation is in progress, and an access that maps to within the address range of the block invalidate operation will be treated as a cache miss to ensure that the requesting CPU will receive valid data.
Abstract:
A method includes determining, by a level one (L1) controller, to change a size of a L1 main cache; servicing, by the L1 controller, pending read requests and pending write requests from a central processing unit (CPU) core; stalling, by the L1 controller, new read requests and new write requests from the CPU core; writing back and invalidating, by the L1 controller, the L1 main cache. The method also includes receiving, by a level two (L2) controller, an indication that the L1 main cache has been invalidated and, in response, flushing a pipeline of the L2 controller; in response to the pipeline being flushed, stalling, by the L2 controller, requests received from any master; reinitializing, by the L2 controller, a shadow L1 main cache. Reinitializing includes clearing previous contents of the shadow L1 main cache and changing the size of the shadow L1 main cache.
Abstract:
Methods, apparatus, systems and articles of manufacture are disclosed for multi-banked victim cache with dual datapath. An example cache system includes a storage element that includes banks operable to store data, ports operable to receive memory operations in parallel, wherein each of the memory operations has a respective address, and a plurality of comparators coupled such that each of the comparators is coupled to a respective port of the ports and a respective bank of the banks and is operable to determine whether a respective address of a respective memory operation received by the respective port corresponds to the data stored in the respective bank.
Abstract:
Methods, apparatus, systems and articles of manufacture are disclosed for read-modify-write support in multi-banked data RAM cache for bank arbitration. An example data cache system includes a store queue including a plurality of bank queues including a first bank queue having a write and read port configured to receive a respective write and read operation, storage coupled to the store queue including a plurality of data banks including a first data bank having a first port configured to receive the write or the read operation, first through third multiplexers, and bank arbitration logic including first arbiters including a first arbiter and second arbiters including a second arbiter, the first arbiter coupled to the second arbiter, the second and third multiplexers, the second arbiter coupled to the first multiplexer.
Abstract:
Methods, apparatus, systems and articles of manufacture to facilitate an atomic operation and/or a histogram operation in cache pipeline are disclosed An example system includes a cache storage coupled to an arithmetic component; and a cache controller coupled to the cache storage, wherein the cache controller is operable to: receive a memory operation that specifies a set of data; retrieve the set of data from the cache storage; utilize the arithmetic component to determine a set of counts of respective values in the set of data; generate a vector representing the set of counts; and provide the vector.
Abstract:
An apparatus includes first CPU and second CPU cores, a L1 cache subsystem coupled to the first CPU core and comprising a L1 controller, and a L2 cache subsystem coupled to the L1 cache subsystem and to the second CPU core. The L2 cache subsystem includes a L2 memory and a L2 controller configured to operate in an aliased mode in response to a value in a memory map control register being asserted. In the aliased mode, the L2 controller receives a first request from the first CPU core directed to a virtual address in the L2 memory, receives a second request from the second CPU core directed to the virtual address in the L2 memory, directs the first request to a physical address A in the L2 memory, and directs the second request to a physical address B in the L2 memory.
Abstract:
Methods, apparatus, systems and articles of manufacture to reduce bank pressure using aggressive write merging are disclosed. An example apparatus includes a first cache storage; a second cache storage; a store queue coupled to at least one of the first cache storage and the second cache storage and operable to: receive a first memory operation; process the first memory operation for storing the first set of data in at least one of the first cache storage and the second cache storage; receive a second memory operation; and prior to storing the first set of data in the at least one of the first cache storage and the second cache storage, merge the first memory operation and the second memory operation.