Abstract:
A circuit and apparatus for filtering harmful harmonics is disclosed. The circuit and apparatus include a power amplifier core that uses equally sized inverter based amplifiers. The amplifier core cells provide uniform load to all phases of a fundamental frequency to cancel all harmonics at an output. The power amplifier stages are driven into nonlinearity, and the combination of harmonics is performed at the output by varying series connected capacitors. The harmonic combination is performed at the output, leaving no further scope of nonlinearity in the signal chain.
Abstract:
A differential odd integer divider provides low power and compact sub-harmonics of an applied square or sinusoidal clock signal with self-aligned 50% duty cycle. The odd integer divider circuit includes a set of low power delay cells connected in a ring fashion. Each delay cell includes two differential dual port inputs connected to the gates of MOS transistors. For instance, these odd integer dividers include a series of low power latch circuits that are custom configured for minimum headroom and low power consumption. These output phasors can then be combined with an appropriate weight factor to provide a near-sinusoidal waveshape from the input square waveshape. Intrinsic 50% duty cycle maybe shortened or stretched by using combinatorial logic circuits.
Abstract:
A self-calibrating shared-component dual synthesizer includes, for example, two frequency synthesizers that are adapted to operate (respectively) in transmit (TX) and receive (RX) modes. Each synthesizer can be selectively arranged to vary and optimize the phase noise in accordance with the TX and RX requirements associated with each mode as well as independently optimized for flexible low area floorplan to achieve low power, spectral fidelity and reduced test time, low cost built in self-calibration. The two frequency synthesizers are also adapted to provide a built-in self-test signals used for intermodulation testing and calibration.
Abstract:
A wireless wake-up receiver includes multiple signal chains each signal chain being coupled to continuously receive a signal from a respective antenna and to provide a respective detected pattern at a signal chain output. Each signal chain includes a first path having a mixer-first architecture and operates in a bandpass-mode using differential signals. The wireless wake-up receiver also includes a digital correlator operable to receive the respective detected patterns and to determine whether one of the respective detected patterns is equal to a desired pattern.
Abstract:
Methods and circuitry for calibrating inductive-capacitive resonant circuits are disclosed. An example of the circuitry includes an inductive-capacitive (L-C) resonant circuit operable to receive signals in response to induced electromagnetic signals transmitted on a carrier frequency. A demodulator has a signal source and is operable to demodulate signals generated by the L-C resonant circuit. Switching circuitry is operable to inject signals generated by the signal source into the L-C resonant circuit during a calibration mode. The calibration mode is for adjusting the capacitance in the L-C resonant circuit to tune the L-C resonant circuit to the carrier frequency.
Abstract:
An analog circuit for generating a periodic signal at a selected phase, including one or more phase interpolators that receive orthogonal differential RF signals and a pair of differential gain signals. The differential in-phase RF signal is applied at respective gates of tail transistors, and a first differential gain signal is applied across gates of a transistor pair coupled to each of the tail transistors. The quadrature-phase RF signal and a second differential gain signal is similarly applied to another quad of transistors (i.e., pair of transistor pairs) and associated tail transistors. A load connected to the one transistor in each pair receives the output signal, at a phase corresponding to a ratio of the first and second gain signals. The gain signals may be DC or AC, which allows configuration of the circuit as a phase shifter or an upconversion mixer, and the load may be presented by a transform in which the phase also depends on the relative coupling from the in-phase and quadrature-phase sides of the phase interpolator.
Abstract:
A wireless receiver includes a receiver front-end where the input of the LNA and the mixer have separate main radio and wake-up modes, where same DC voltage is used at the input of the LNA, and the input of the baseband filter. When the receiver switches between the wake-up and main radio mode, wake-up current usage is reduced due to near zero latency in programming bias voltages from the power management unit. The receiving circuitry can one or both of selectively change a signal processing path for the receiving circuitry or selectively configure signal processing circuits of the receiving circuitry when switching between the wake-up mode configuration and the main radio mode configuration. The programming and configurations are dependent on the dynamic range and modulation techniques and requires near zero area overhead compared with the main radio receiver.
Abstract:
Example embodiments of the systems and methods of polyphase generation involve quadrature generation in high frequency digital transceivers. An oscillation signal is received and converted to complex variables with lead and lag phase rotation while performing compensation and calibration due to non-idealities of the in-phase and quadrature phase component parts. In addition to orthagonalizating, the quadrature generator also provides signal amplification and filtering. The quadrature phase generation scheme may be extended to odd harmonics of the fundamental frequency at the input.
Abstract:
A wireless receiver includes a receiver mixer having at least two sets of switches connected to selectively pass a portion of a received RF signal to the mixer's output. Different sets of the switches are activated by different phases of a local oscillator to effect passing of different phases of the RF signal to the output. These outputs are combined in various ways to obtain operation of the main receiver and the wake up receiver modes at harmonically related carrier frequencies with as low as possible subharmonic multi-phase clock generation network. This can be used to detect a wake up signal with a very fast response time, minimal area overhead, minimal power usage, and equal loading to the local oscillator network providing the phases to the mixer to maintain excellent phase balance and precise harmonic selectivity.
Abstract:
Integrated circuit transceiver circuitry (2) includes a first resonant circuit (3A) coupled to a narrowband interface (6,7A,7B,21) between a first amplifier (3,20) and an interfacing circuit (4,8,9,44), including a programmable first reactive element (C) and a second reactive element (L). Amplitude sensing circuitry (42) senses a maximum amplitude of an in-phase signal (I) or a quadrature-phase signal (Q). An on-chip first tone generation circuit (38,38A,38B,38C) generates tones for injection into the in-phase signal and the quadrature-phase signal and operates in response to frequency scanning circuitry (30) and the amplitude sensing circuitry to adjust the first reactive element (C) to calibrate the first resonant circuit to a desired resonant frequency by selectively coupling reactive sub-elements (1, 2, 4, 8 . . . ×Cv) into the first reactive element (C).