Abstract:
A method of fabricating an integrated circuit (IC) includes providing a substrate having a semiconductor surface layer thereon including a field dielectric in a portion of the semiconductor surface layer and a pair of matched devices in at least one of a CMOS area, BiCMOS area, bipolar transistor area, and a resistor area. Dopants are ion implanted into the at least one of the CMOS area, the BiCMOS area, the bipolar transistor area, and the resistor area. The substrate is annealed in a processing chamber of a rapid thermal processor (RTP). The annealing comprises an initial temperature stabilization step including first annealing at a lower temperature for a first time of at least 20 seconds, and then a second annealing comprising ramping from the lower temperature to a peak higher temperature that is at least 100° C. higher (>) than the lower temperature.
Abstract:
An integrated circuit with a thick TiN metal gate with a work function greater than 4.85 eV and with a thin TiN metal gate with a work function less than 4.25 eV. An integrated circuit with a replacement gate PMOS TiN metal gate transistor with a workfunction greater than 4.85 eV and with a replacement gate NMOS TiN metal gate transistor with a workfunction less than 4.25 eV. An integrated circuit with a gate first PMOS TiN metal gate transistor with a workfunction greater than 4.85 eV and with a gate first NMOS TiN metal gate transistor with a workfunction less than 4.25 eV.
Abstract:
A method of fabricating an integrated circuit includes depositing a first dielectric material onto a semiconductor surface of a substrate having a gate stack thereon including a gate electrode on a gate dielectric. The first dielectric material is etched to form sidewall spacers on sidewalls of the gate stack. A top surface of the first dielectric material is chemically converted to a second dielectric material by adding at least one element to provide surface converted sidewall spacers. The second dielectric material is chemically bonded across a transition region to the first dielectric material.
Abstract:
An integrated circuit with a thick TiN metal gate with a work function greater than 4.85 eV and with a thin TiN metal gate with a work function less than 4.25 eV. An integrated circuit with a replacement gate PMOS TiN metal gate transistor with a workfunction greater than 4.85 eV and with a replacement gate NMOS TiN metal gate transistor with a workfunction less than 4.25 eV. An integrated circuit with a gate first PMOS TiN metal gate transistor with a workfunction greater than 4.85 eV and with a gate first NMOS TiN metal gate transistor with a workfunction less than 4.25 eV.
Abstract:
A method of fabricating a semiconductor die includes circuit elements configured to provide a circuit function. A substrate including a bottomside and a topside is provided. At least one multi-layer structure is formed. The forming is done by depositing a coefficient of thermal expansion (CTE) graded layer comprising at least a dielectric portion on a first material having a first CTE to provide a first side facing said first material and a second side opposite the first side. The depositing includes flowing a first reactive component and at least a second reactive component. A gas flow ratio of the first reactive component relative to the second reactive component is automatically changed during a deposition time to provide a non-constant composition profile which has a graded CTE that increases from the first side to the second side. A metal layer comprising a second material having a second CTE is formed on the second side. The second CTE is higher than the first CTE.