摘要:
Fabrication of monolithic lattice-mismatched semiconductor heterostructures with limited area regions having upper portions substantially exhausted of threading dislocations, as well as fabrication of semiconductor devices based on such lattice-mismatched heterostructures.
摘要:
Monolithic lattice-mismatched semiconductor heterostructures are fabricated by bonding patterned substrates with alternative active-area materials formed thereon to a rigid dielectric platform and then removing the highly-defective interface areas along with the underlying substrates to produce alternative active-area regions disposed over the insulator and substantially exhausted of misfit and threading dislocations.
摘要:
A method for minimizing particle generation during deposition of a graded Si.sub.1-xGe.sub.x layer on a semiconductor material includes providing a substrate in an atmosphere including a Si precursor and a Ge precursor, wherein the Ge precursor has a decomposition temperature greater than germane, and depositing the graded Si.sub.1-xGe.sub.x layer having a final Ge content of greater than about 0.15 and a particle density of less than about 0.3 particles/cm.sup.2 on the substrate.
摘要翻译:在半导体材料上沉积梯度Si 1-x Ge x层的过程中使颗粒产生最小化的方法包括在包括Si前体和Ge前体的气氛中提供衬底,其中Ge前体具有分解 温度大于锗烷,并沉积具有大于约0.15的最终Ge含量并且小于约0.3颗粒/ cm 2的颗粒密度的梯度Si 1-x Ge 2层在衬底上 。
摘要:
A semiconductor structure includes a strain-inducing substrate layer having a germanium concentration of at least 10 atomic %. The semiconductor structure also includes a compressively strained layer on the strain-inducing substrate layer. The compressively strained layer has a germanium concentration at least approximately 30 percentage points greater than the germanium concentration of the strain-inducing substrate layer, and has a thickness less than its critical thickness. The semiconductor structure also includes a tensilely strained layer on the compressively strained layer. The tensilely strained layer may be formed from silicon having a thickness less than its critical thickness. A method for fabricating a semiconductor structure includes providing a substrate, providing a compressively strained semiconductor on the substrate, depositing a tensilely strained semiconductor adjacent the substrate until a thickness of a first region of the tensilely strained semiconductor is greater than a thickness of a second region of the tensilely strained semiconductor, forming a n-channel device on the first region, and forming a p-channel device on the second region.
摘要:
A semiconductor structure having a substrate with a surface layer including strained silicon. The surface layer has a first region with a first thickness less than a second thickness of a second region. A gate dielectric layer is disposed over a portion of at least the first surface layer region.
摘要:
A semiconductor structure includes a strain-inducing substrate layer having a germanium concentration of at least 10 atomic %. The semiconductor structure also includes a compressively strained layer on the strain-inducing substrate layer. The compressively strained layer has a germanium concentration at least approximately 30 percentage points greater than the germanium concentration of the strain-inducing substrate layer, and has a thickness less than its critical thickness. The semiconductor structure also includes a tensilely strained layer on the compressively strained layer. The tensilely strained layer may be formed from silicon having a thickness less than its critical thickness. A method for fabricating a semiconductor structure includes providing a substrate, providing a compressively strained semiconductor on the substrate, depositing a tensilely strained semiconductor adjacent the substrate until a thickness of a first region of the tensilely strained semiconductor is greater than a thickness of a second region of the tensilely strained semiconductor, forming a n-channel device on the first region, and forming a p-channel device on the second region.
摘要:
A method for minimizing particle generation during deposition of a graded Si1−xGex layer on a semiconductor material includes providing a substrate in an atmosphere including a Si precursor and a Ge precursor, wherein the Ge precursor has a decomposition temperature greater than germane, and depositing the graded Si1−xGex layer having a final Ge content of greater than about 0.15 and a particle density of less than about 0.3 particles/cm2 on the substrate.
摘要翻译:在半导体材料上沉积梯度Si1-xGex层期间最小化颗粒产生的方法包括在包括Si前体和Ge前体的气氛中提供衬底,其中Ge前体的分解温度大于锗烷,并沉积 分级的Si1-xGex层,其具有大于约0.15的最终Ge含量和小于约0.3颗粒/ cm 2的颗粒密度。
摘要:
A method for minimizing particle generation during deposition of a graded Si1-xGex layer on a semiconductor material includes providing a substrate in an atmosphere including a Si precursor and a Ge precursor, wherein the Ge precursor has a decomposition temperature greater than germane, and depositing the graded Si1-xGex layer having a final Ge content of greater than about 0.15 and a particle density of less than about 0.3 particles/cm2 on the substrate.
摘要翻译:在半导体材料上沉积梯度Si1-xGex层期间最小化颗粒产生的方法包括在包括Si前体和Ge前体的气氛中提供衬底,其中Ge前体的分解温度大于锗烷,并沉积 分级的Si1-xGex层,其具有大于约0.15的最终Ge含量和小于约0.3颗粒/ cm 2的颗粒密度。
摘要:
A method for minimizing particle generation during deposition of a graded Si1-xGex layer on a semiconductor material includes providing a substrate in an atmosphere including a Si precursor and a Ge precursor, wherein the Ge precursor has a decomposition temperature greater than germane, and depositing the graded Si1-xGex layer having a final Ge content of greater than about 0.15 and a particle density of less than about 0.3 particles/cm2 on the substrate.
摘要翻译:在半导体材料上沉积梯度的Si 1-x N x N x层的最小化颗粒产生的方法包括在包括Si前体和Ge的气氛中提供衬底 前体,其中所述Ge前体具有大于锗烷的分解温度,以及沉积具有大于约0.15的最终Ge含量的分级的Si 1-x N x Ge x层;以及 衬底上的颗粒密度小于约0.3颗粒/ cm 2。
摘要:
Semiconductor structures and devices including strained material layers having impurity-free zones, and methods for fabricating same. Certain regions of the strained material layers are kept free of impurities that can interdiffuse from adjacent portions of the semiconductor. When impurities are present in certain regions of the strained material layers, there is degradation in device performance. By employing semiconductor structures and devices (e.g., field effect transistors or “FETs”) that have the features described, or are fabricated in accordance with the steps described, device operation is enhanced.