摘要:
In a method for forming patterned ceramic layers, a ceramic material is deposited on a substrate and is subsequently densified by heat treatment, for example. In this case, the initially amorphous material is converted into a crystalline or polycrystalline form. In order that the now crystalline material can be removed again from the substrate, imperfections are produced in the ceramic material, for example by ion implantation. As a result, the etching medium can more easily attack the ceramic material, so that the latter can be removed with a higher etching rate. Through inclined implantation, the method can be performed in a self-aligning manner and the ceramic material can be removed on one side, by way of example, in trenches or deep trench capacitors.
摘要:
A process for modifying sections of a semiconductor includes covering the sections to remain free of doping with a metal oxide, e.g., aluminum oxide. Then, the semiconductor is doped, for example, from the gas phase, in those sections that are not covered by the aluminum oxide. Finally, the aluminum oxide is selectively removed again, for example using hot phosphoric acid. Sections of the semiconductor surface which are formed from silicon, silicon oxide or silicon nitride remain in place on the wafer.
摘要:
The present invention relates to a method for determining the depth of a buried structure in a semiconductor wafer. According to the invention, the layer behavior of the semiconductor wafer which is brought about by the buried structure when the semiconductor wafer is irradiated with electromagnetic radiation in the infrared range and arises as a result of the significantly longer wavelengths of the radiation used in comparison with the lateral dimensions of the buried structure is utilized to determine the depth of the buried structure by spectrometric and/or ellipsometric methods.
摘要:
A method produces stacked capacitors for dynamic memory cells, in which a number of trenches (48) are formed in the masking layer (40), each trench (48) being arranged above a respective contact plug (26) and extending from the top (42) of the masking layer (40) to the contact plugs (26). A conductive layer (50) covers the side walls (49) of the trenches (48) and the contact plugs (26) in order to form a first electrode (60) of a stacked capacitor (12). In an upper region (63), which is remote from the contact stack (26), the conductive layer (50) is replaced by an insulating layer, so that it is not possible for a short circuit to arise in the event of any adhesion between adjacent electrodes.
摘要:
One embodiment relates to an integrated circuit formed on a semiconductor body having interconnect between source/drain regions of a first and second transistor. The interconnect includes a metal body arranged underneath the surface of the semiconductor body. A contact element establishes electrical contact between the metal body and the source/drain regions of the first and second transistor. The contact element extends along a connecting path between the source/drain regions of the first and second transistors. Other methods, devices, and systems are also disclosed.
摘要:
The atomic layer deposition process according to the invention provides the following steps for the production of homogeneous layers on a substrate. The substrate is introduced into a reaction chamber. A first precursor is introduced into the reaction chamber, which first precursor reacts on the surface of the substrate to form an intermediate product. A second precursor is introduced into the reaction chamber, which second precursor has a low sticking coefficient and reacts with part of the intermediate product to form a first product. A third precursor is introduced into the reaction chamber, which third precursor has a high sticking coefficient and reacts with the remaining part of the intermediate product to form a second product. The second precursor and its first product reduce the effective sticking coefficient of the third precursor by partially covering the surface.
摘要:
A dual workfunction semiconductor device which comprises a first and second control electrode comprising a metal-semiconductor compound, e.g. a silicide or a germanide, and a dual workfunction semiconductor device thus obtained are disclosed. In one aspect, the method comprises forming a blocking region for preventing diffusion of metal from the metal-semiconductor compound of the first control electrode to the metal-semiconductor compound of the second control electrode, the blocking region being formed at a location where an interface between the first and second control electrodes is to be formed or is formed. By preventing metal to diffuse from the one to the other control electrode the constitution of the metal-semiconductor compounds of the first and second control electrodes may remain substantially unchanged during e.g. thermal steps in further processing of the device.
摘要:
One embodiment relates to an integrated circuit formed on a semiconductor body having interconnect between source/drain regions of a first and second transistor. The interconnect includes a metal body arranged underneath the surface of the semiconductor body. A contact element establishes electrical contact between the metal body and the source/drain regions of the first and second transistor. The contact element extends along a connecting path between the source/drain regions of the first and second transistors. Other methods, devices, and systems are also disclosed.
摘要:
A dual workfunction semiconductor device which comprises a first and second control electrode comprising a metal-semiconductor compound, e.g. a silicide or a germanide, and a dual workfunction semiconductor device thus obtained are disclosed. In one aspect, the method comprises forming a blocking region for preventing diffusion of metal from the metal-semiconductor compound of the first control electrode to the metal-semiconductor compound of the second control electrode, the blocking region being formed at a location where an interface between the first and second control electrodes is to be formed or is formed. By preventing metal to diffuse from the one to the other control electrode the constitution of the metal-semiconductor compounds of the first and second control electrodes may remain substantially unchanged during e.g. thermal steps in further processing of the device.
摘要:
A method produces stacked capacitors for dynamic memory cells, in which a number of trenches (48) are formed in the masking layer (40), each trench (48) being arranged above a respective contact plug (26) and extending from the top (42) of the masking layer (40) to the contact plugs (26). A conductive layer (50) covers the side walls (49) of the trenches (48) and the contact plugs (26) in order to form a first electrode (60) of a stacked capacitor (12). In an upper region (63), which is remote from the contact stack (26), the conductive layer (50) is replaced by an insulating layer, so that it is not possible for a short circuit to arise in the event of any adhesion between adjacent electrodes.