Abstract:
A plasma processing apparatus includes a processing chamber having a plasma processing space therein and a substrate support in the processing chamber at a first end for supporting a substrate. A plasma source is coupled into the processing space and configured to form a plasma at a second end of the processing chamber opposite said first end. The apparatus further includes a magnetic grid having an intensity of a magnetic flux therein, a plurality of passageways penetrating from a first side to a second side, a thickness, a transparency, a passageway aspect ratio, and a position within the processing chamber between the second end and the substrate. The intensity, the thickness, the transparency, the passageway aspect ratio, and the position are configured to cause electrons having energies above an acceptable maximum level to divert from the direction. A method of obtaining low average electron energy flux onto the substrate is also provided.
Abstract:
A surface wave plasma (SWP) source couples microwave (MW) energy into a processing chamber through, for example, a radial line slot antenna, to result in a low mean electron energy (Te). An ICP source, is provided between the SWP source and the substrate and is energized at a low power, less than 100 watts for 300 mm wafers, for example, at about 25 watts. The ICP source couples energy through a peripheral electric dipole coil to reduce capacitive coupling.
Abstract:
A surface wave plasma (SWP) source is described. The SWP source comprises an electromagnetic (EM) wave launcher configured to couple EM energy in a desired EM wave mode to a plasma by generating a surface wave on a plasma surface of the EM wave launcher adjacent the plasma. The EM wave launcher comprises a slot antenna having at least one slot. The SWP source further comprises a first recess configuration and a second recess configuration formed in the plasma surface, wherein at least one first recess of the first recess configuration differs in size and/or shape from at least one second recess of the second recess configurations. A power coupling system is coupled to the EM wave launcher and configured to provide the EM energy to the EM wave launcher for forming the plasma.
Abstract:
A processing system is disclosed, having a power transmission element with an interior cavity that propagates electromagnetic energy proximate to a continuous slit in the interior cavity. The continuous slit forms an opening between the interior cavity and a substrate processing chamber. The electromagnetic energy may generate an alternating charge in the continuous slit that enables the generation of an electric field that may propagate into the processing chamber. The electromagnetic energy may be conditioned prior to entering the interior cavity to improve uniformity or stability of the electric field. The conditioning may include, but is not limited to, phase angle, field angle, and number of feeds into the interior cavity.
Abstract:
A processing system is disclosed, having a power transmission element with an interior cavity that propagates electromagnetic energy proximate to a continuous slit in the interior cavity. The continuous slit forms an opening between the interior cavity and a substrate processing chamber. The electromagnetic energy may generate an alternating charge in the continuous slit that enables the generation of an electric field that may propagate into the processing chamber. The electromagnetic energy may be conditioned prior to entering the interior cavity to improve uniformity or stability of the electric field. The conditioning may include, but is not limited to, phase angle, field angle, and number of feeds into the interior cavity.
Abstract:
A processing method and system are provided for processing a substrate with a plasma in the presence of an electro-negative gas. A processing gas is injected into a processing chamber. The gas includes a high electron affinity gas species. A surface is provided in the plasma chamber onto which the gas species has a tendency to chemisorb. The gas species is exposed to the surface, chemisorbed onto it, and the surface is exposed to energy that causes negative ions of the chemisorbed gas species, that interact in the plasma to release secondary electrons. A neutralizer grid may be provided to separate from the chamber a second chamber in which forms a low energy secondary plasma for processing the substrate that is dense in electrons and contains high energy neutrals of the gas species and high energy positive ions of processing gas. Pulsed energy may be used to excite plasma or bias the substrate. A hollow cathode source is also provided.
Abstract:
A processing method and system are provided for processing a substrate with a plasma in the presence of an electro-negative gas. A processing gas is injected into a processing chamber. The gas includes a high electron affinity gas species. A surface is provided in the plasma chamber onto which the gas species has a tendency to chemisorb. The gas species is exposed to the surface, chemisorbed onto it, and the surface is exposed to energy that causes negative ions of the chemisorbed gas species, that interact in the plasma to release secondary electrons. A neutralizer grid may be provided to separate from the chamber a second chamber in which forms a low energy secondary plasma for processing the substrate that is dense in electrons and contains high energy neutrals of the gas species and high energy positive ions of processing gas. Pulsed energy may be used to excite plasma or bias the substrate. A hollow cathode source is also provided.
Abstract:
A surface wave plasma (SWP) source couples microwave (MW) energy into a processing chamber through, for example, a radial line slot antenna, to result in a low mean electron energy (Te). An ICP source, is provided between the SWP source and the substrate and is energized at a low power, less than 100 watts for 300 mm wafers, for example, at about 25 watts. The ICP source couples energy through a peripheral electric dipole coil to reduce capacitive coupling.
Abstract:
A plasma processing apparatus includes a processing chamber having a plasma processing space therein and a substrate support in the processing chamber at a first end for supporting a substrate. A plasma source is coupled into the processing space and configured to form a plasma at a second end of the processing chamber opposite said first end. The apparatus further includes a magnetic grid having an intensity of a magnetic flux therein, a plurality of passageways penetrating from a first side to a second side, a thickness, a transparency, a passageway aspect ratio, and a position within the processing chamber between the second end and the substrate. The intensity, the thickness, the transparency, the passageway aspect ratio, and the position are configured to cause electrons having energies above an acceptable maximum level to divert from the direction. A method of obtaining low average electron energy flux onto the substrate is also provided.
Abstract:
This disclosure relates to a plasma processing system for controlling plasma density near the edge or perimeter of a substrate that is being processed. The plasma processing system may include a plasma chamber that can receive and process the substrate using plasma for etching the substrate, doping the substrate, or depositing a film on the substrate. This disclosure relates to a plasma processing system that may include a power electrode that may be opposite a bias electrode and a focus ring electrode that surrounds the substrate. In one embodiment, the power electrode may be coupled to a direct current (DC) source. Power applied to the bias electrode may be used to draw ions to the substrate. The plasma density may be made more uniform by applying a focus ring voltage to the focus ring that is disposed around the substrate and/or the bias electrode.