摘要:
The present invention provides a SWP (surface wave plasma) processing system that does not create underdense conditions when operating at low microwave power and high gas pressure, thereby achieving a larger process window. The DC ring subsystem can be used to adjust the edge to central plasma density ratio to achieve uniformity control in the SWP processing system.
摘要:
A radio frequency (RF) power coupling system is provided. The system has an RF electrode configured to couple RF power to plasma in a plasma processing system, multiple power coupling elements configured to electrically couple RF power at multiple power coupling locations on the RF electrode, and an RF power system coupled to the multiple power coupling elements, and configured to couple an RF power signal to each of the multiple power coupling elements. The multiple power coupling elements include a center element located at the center of the RF electrode and peripheral elements located off-center from the center of the RF electrode. A first peripheral RF power signal differs from a second peripheral RF power signal in phase.
摘要:
A surface wave plasma (SWP) source couples microwave (MW) energy into a processing chamber through, for example, a radial line slot antenna, to result in a low mean electron energy (Te). An ICP source, is provided between the SWP source and the substrate and is energized at a low power, less than 100 watts for 300 mm wafers, for example, at about 25 watts. The ICP source couples energy through a peripheral electric dipole coil to reduce capacitive coupling.
摘要:
A surface wave plasma (SWP) source couples microwave (MW) energy into a processing chamber through, for example, a radial line slot antenna, to result in a low mean electron energy (Te). An ICP source, is provided between the SWP source and the substrate and is energized at a low power, less than 100 watts for 300 mm wafers, for example, at about 25 watts. The ICP source couples energy through a peripheral electric dipole coil to reduce capacitive coupling.
摘要:
A method of treating a substrate with plasma is described. In particular, the method includes disposing a substrate in a plasma processing system, disposing a hollow cathode plasma source including at least one hollow cathode within the plasma processing system, and disposing a grid between the cathode outlet of the plurality of hollow cathodes and the substrate. The method further includes electrically coupling the grid to electrical ground, coupling a voltage to the at least one hollow cathode relative to electrical ground, and generating plasma in hollow cathode by ion-induced secondary electron emission of energetic electrons that move along a first trajectory, and diffusing lower energy electrons along a second trajectory across a first region of the interior space between the cathode outlet and the grid, through the grid, and into a second region of the interior space in fluid contact with the substrate.
摘要:
A surface wave plasma (SWP) source couples microwave (MW) energy into a processing chamber through, for example, a radial line slot antenna, to result in a low mean electron energy (Te). An ICP source, is provided between the SWP source and the substrate and is energized at a low power, less than 100 watts for 300 mm wafers, for example, at about 25 watts. The ICP source couples energy through a peripheral electric dipole coil to reduce capacitive coupling.
摘要:
The present invention provides a SWP (surface wave plasma) processing system that does not create underdense conditions when operating at low microwave power and high gas pressure, thereby achieving a larger process window. The DC ring subsystem can be used to adjust the edge to central plasma density ratio to achieve uniformity control in the SWP processing system.
摘要:
A method of treating a substrate with plasma is described. In particular, the method includes disposing a substrate in a plasma processing system, disposing a hollow cathode plasma source including at least one hollow cathode within the plasma processing system, and disposing a grid between the cathode outlet of the plurality of hollow cathodes and the substrate. The method further includes electrically coupling the grid to electrical ground, coupling a voltage to the at least one hollow cathode relative to electrical ground, and generating plasma in hollow cathode by ion-induced secondary electron emission of energetic electrons that move along a first trajectory, and diffusing lower energy electrons along a second trajectory across a first region of the interior space between the cathode outlet and the grid, through the grid, and into a second region of the interior space in fluid contact with the substrate.
摘要:
A method of selectively activating a chemical process using a DC pulse etcher. A processing chamber includes a substrate therein for chemical processing. The method includes coupling energy into a process gas within the processing chamber so as to produce a plasma containing positive ions. A pulsed DC bias is applied to the substrate, which is positioned on a substrate support within the processing chamber. Periodically, the substrate is biased between first and second bias levels, wherein the first bias level is more negative than the second bias level. When the substrate is biased to the first bias level, mono-energetic positive ions are attracted from plasma toward the substrate, the mono-energetic positive ions being selective so as to enhance a selected chemical etch process.
摘要:
A surface wave plasma (SWP) source couples microwave (MW) energy into a processing chamber through, for example, a radial line slot antenna, to result in a low mean electron energy (Te). An ICP source, is provided between the SWP source and the substrate and is energized at a low power, less than 100 watts for 300 mm wafers, for example, at about 25 watts. The ICP source couples energy through a peripheral electric dipole coil to reduce capacitive coupling.