摘要:
A variable capacitance device including a plurality of FETs, the sources and drains of each FET being coupled to a first terminal, the gates of each FET being coupled to a second terminal, the capacitance of said device between said first and second terminals varying as a function of the voltage across said terminals, the device further including a biasing providing a respective backgate bias voltage to each the FETs setting a respective gate threshold voltage thereof. The aggregate V-C characteristic can be tuned as desired, either at design time or dynamically. The greater the number of FETs forming the varactor, the greater the number of possible Vt values that can be individually set, so that arbitrary V-C characteristics can be more closely approximated.
摘要:
A lateral diffused metal-oxide-semiconductor field effect transistor (LDMOS transistor) employs a stress layer that enhances carrier mobility (i.e., on-current) while also maintaining a high breakdown voltage for the device. High breakdown voltage is maintained, because an increase in doping concentration of the drift region is minimized. A well region and a drift region are formed in the substrate adjacent to one another. A first shallow trench isolation (STI) region is formed on and adjacent to the well region, and a second STI region is formed on and adjacent to the drift region. A stress layer is deposited over the LDMOS transistor and in the second STI region, which propagates compressive or tensile stress into the drift region, depending on the polarity of the stress layer. A portion of the stress layer can be removed over the gate to change the polarity of stress in the inversion region below the gate.
摘要:
Device structures, fabrication methods, operating methods, and design structures for a silicon controlled rectifier. The method includes applying a mechanical stress to a region of a silicon controlled rectifier (SCR) at a level sufficient to modulate a trigger current of the SCR. The device and design structures include a SCR with an anode, a cathode, a first region, and a second region of opposite conductivity type to the first region. The first and second regions of the SCR are disposed in a current-carrying path between the anode and cathode of the SCR. A layer is positioned on a top surface of a semiconductor substrate relative to the first region and configured to cause a mechanical stress in the first region of the SCR at a level sufficient to modulate a trigger current of the SCR.
摘要:
A lateral diffused metal-oxide-semiconductor field effect transistor (LDMOS transistor) employs a stress layer that enhances carrier mobility (i.e., on-current) while also maintaining a high breakdown voltage for the device. High breakdown voltage is maintained, because an increase in doping concentration of the drift region is minimized. A well region and a drift region are formed in the substrate adjacent to one another. A first shallow trench isolation (STI) region is formed on and adjacent to the well region, and a second STI region is formed on and adjacent to the drift region. A stress layer is deposited over the LDMOS transistor and in the second STI region, which propagates compressive or tensile stress into the drift region, depending on the polarity of the stress layer. A portion of the stress layer can be removed over the gate to change the polarity of stress in the inversion region below the gate.
摘要:
An Integrated Circuit (IC) and a method of making the same. In one embodiment, the IC includes: a substrate; a first semiconductor layer disposed on the substrate; a shallow trench isolation (STI) extending through the first semiconductor layer to within a portion of the substrate, the STI substantially separating a first n+ region and a second n+ region; and a gate disposed on a portion of the first semiconductor layer and connected to the STI, the gate including: a buried metal oxide (BOX) layer disposed on the first semiconductor layer and connected to the STI; a cap layer disposed on the BOX layer; and a p-type well component disposed within the first semiconductor layer and the substrate, the p-type well component connected to the second n+ region.
摘要:
A semiconductor structure and method of manufacture and, more particularly, a field effect transistor that has a body contact and method of manufacturing the same is provided. The structure includes a device having a raised source region of a first conductivity type and an active region below the raised source region extending to a body of the device. The active region has a second conductivity type different than the first conductivity type. A contact region is in electric contact with the active region. The method includes forming a raised source region over an active region of a device and forming a contact region of a same conductivity type as the active region, wherein the active region forms a contact body between the contact region and a body of the device.
摘要:
The disclosure relates generally to junction gate field effect transistor (JFET) structures and methods of forming the same. The JFET structure includes a p-type substrate having a p-region therein; an n-channel thereunder; and n-doped enhancement regions within the n-channel, each n-doped enhancement region separated from the p-region.
摘要:
Methods of forming hyper-abrupt p-n junctions and design structures for an integrated circuit containing devices structures with hyper-abrupt p-n junctions. The hyper-abrupt p-n junction is defined in a SOI substrate by implanting a portion of a device layer to have one conductivity type and then implanting a portion of this doped region to have an opposite conductivity type. The counterdoping defines the hyper-abrupt p-n junction. A gate structure carried on a top surface of the device layer operates as a hard mask during the ion implantations to assist in defining a lateral boundary for the hyper-abrupt p-n junction.
摘要:
Device structures with hyper-abrupt p-n junctions, methods of forming hyper-abrupt p-n junctions, and design structures for an integrated circuit containing devices structures with hyper-abrupt p-n junctions. The hyper-abrupt p-n junction is defined in a SOI substrate by implanting a portion of a device layer to have one conductivity type and then implanting a portion of this doped region to have an opposite conductivity type. The counterdoping defines the hyper-abrupt p-n junction. A gate structure carried on a top surface of the device layer operates as a hard mask during the ion implantations to assist in defining a lateral boundary for the hyper-abrupt-n junction.
摘要:
A semiconductor structure includes a semiconductor-on-insulator substrate, the semiconductor-on-insulator substrate comprising a handle wafer, a buried oxide (BOX) layer on top of the handle wafer, and a top silicon layer on top of the BOX layer; and an implantation region located in the top silicon layer, the implantation region comprising a noble gas.