摘要:
A lateral diffused metal-oxide-semiconductor field effect transistor (LDMOS transistor) employs a stress layer that enhances carrier mobility (i.e., on-current) while also maintaining a high breakdown voltage for the device. High breakdown voltage is maintained, because an increase in doping concentration of the drift region is minimized. A well region and a drift region are formed in the substrate adjacent to one another. A first shallow trench isolation (STI) region is formed on and adjacent to the well region, and a second STI region is formed on and adjacent to the drift region. A stress layer is deposited over the LDMOS transistor and in the second STI region, which propagates compressive or tensile stress into the drift region, depending on the polarity of the stress layer. A portion of the stress layer can be removed over the gate to change the polarity of stress in the inversion region below the gate.
摘要:
A lateral diffused metal-oxide-semiconductor field effect transistor (LDMOS transistor) employs a stress layer that enhances carrier mobility (i.e., on-current) while also maintaining a high breakdown voltage for the device. High breakdown voltage is maintained, because an increase in doping concentration of the drift region is minimized. A well region and a drift region are formed in the substrate adjacent to one another. A first shallow trench isolation (STI) region is formed on and adjacent to the well region, and a second STI region is formed on and adjacent to the drift region. A stress layer is deposited over the LDMOS transistor and in the second STI region, which propagates compressive or tensile stress into the drift region, depending on the polarity of the stress layer. A portion of the stress layer can be removed over the gate to change the polarity of stress in the inversion region below the gate.
摘要:
Device structures, fabrication methods, operating methods, and design structures for a silicon controlled rectifier. The method includes applying a mechanical stress to a region of a silicon controlled rectifier (SCR) at a level sufficient to modulate a trigger current of the SCR. The device and design structures include a SCR with an anode, a cathode, a first region, and a second region of opposite conductivity type to the first region. The first and second regions of the SCR are disposed in a current-carrying path between the anode and cathode of the SCR. A layer is positioned on a top surface of a semiconductor substrate relative to the first region and configured to cause a mechanical stress in the first region of the SCR at a level sufficient to modulate a trigger current of the SCR.
摘要:
Device structures, fabrication methods, operating methods, and design structures for a silicon controlled rectifier. The method includes applying a mechanical stress to a region of a silicon controlled rectifier (SCR) at a level sufficient to modulate a trigger current of the SCR. The device and design structures include a SCR with an anode, a cathode, a first region, and a second region of opposite conductivity type to the first region. The first and second regions of the SCR are disposed in a current-carrying path between the anode and cathode of the SCR. A layer is positioned on a top surface of a semiconductor substrate relative to the first region and configured to cause a mechanical stress in the first region of the SCR at a level sufficient to modulate a trigger current of the SCR.
摘要:
Device structures for a high voltage junction field effect transistor and design structures for a high voltage integrated circuit. The device structure is manufactured using a hybrid orientation technology wafer with a first semiconductor layer with a first crystalline orientation, a second semiconductor layer with a second crystalline orientation, and an insulating layer between the first and second semiconductor layers. The device structure includes an epitaxial semiconductor region having the second crystalline orientation and first and second p-n junctions in the epitaxial semiconductor region. The epitaxial semiconductor region extends from the second semiconductor layer through the insulating layer and the first semiconductor layer toward a top surface of the first semiconductor layer. The first and second p-n junctions are arranged in depth within the epitaxial semiconductor region between the second semiconductor layer and the top surface of the first semiconductor layer.
摘要:
Methods for manufacturing a high voltage junction field effect transistor. The method includes forming an opening extending from a top surface of a device layer of a hybrid orientation technology (HOT) wafer through the device layer and an insulating layer to expose a portion of a bulk layer, and filling the opening with epitaxial semiconductor material having the crystalline orientation of the bulk layer. The method further includes forming first and second p-n junctions in the epitaxial semiconductor material that are arranged in depth within the epitaxial semiconductor material between the second semiconductor layer and the top surface of the first semiconductor layer.
摘要:
Device structures for a high voltage junction field effect transistor and design structures for a high voltage integrated circuit. The device structure is manufactured using a hybrid orientation technology wafer with a first semiconductor layer with a first crystalline orientation, a second semiconductor layer with a second crystalline orientation, and an insulating layer between the first and second semiconductor layers. The device structure includes an epitaxial semiconductor region having the second crystalline orientation and first and second p-n junctions in the epitaxial semiconductor region. The epitaxial semiconductor region extends from the second semiconductor layer through the insulating layer and the first semiconductor layer toward a top surface of the first semiconductor layer. The first and second p-n junctions are arranged in depth within the epitaxial semiconductor region between the second semiconductor layer and the top surface of the first semiconductor layer.
摘要:
An integrated circuit (IC) chip is provided comprising at least one trench including a stress-inducing material which imparts a stress on a channel region of a device, such as a junction gate field-effect transistor (JFET) or a metal-oxide-semiconductor field-effect transistor (MOSFET). A related method is also disclosed.
摘要:
An integrated circuit (IC) chip is provided comprising at least one trench including a stress-inducing material which imparts a stress on a channel region of a device, such as a junction gate field-effect transistor (JFET) or a metal-oxide-semiconductor field-effect transistor (MOSFET). A related method is also disclosed.
摘要:
A semiconductor structure includes a semiconductor-on-insulator substrate, the semiconductor-on-insulator substrate comprising a handle wafer, a buried oxide (BOX) layer on top of the handle wafer, and a top silicon layer on top of the BOX layer; and an implantation region located in the top silicon layer, the implantation region comprising a noble gas.