摘要:
An Integrated Circuit (IC) and a method of making the same. In one embodiment, the IC includes: a substrate; a first semiconductor layer disposed on the substrate; a shallow trench isolation (STI) extending through the first semiconductor layer to within a portion of the substrate, the STI substantially separating a first n+ region and a second n+ region; and a gate disposed on a portion of the first semiconductor layer and connected to the STI, the gate including: a buried metal oxide (BOX) layer disposed on the first semiconductor layer and connected to the STI; a cap layer disposed on the BOX layer; and a p-type well component disposed within the first semiconductor layer and the substrate, the p-type well component connected to the second n+ region.
摘要:
An Integrated Circuit (IC) and a method of making the same. In one embodiment, the IC includes: a substrate; a first semiconductor layer disposed on the substrate; a shallow trench isolation (STI) extending through the first semiconductor layer to within a portion of the substrate, the STI substantially separating a first n+ region and a second n+ region; and a gate disposed on a portion of the first semiconductor layer and connected to the STI, the gate including: a buried metal oxide (BOX) layer disposed on the first semiconductor layer and connected to the STI; a cap layer disposed on the BOX layer; and a p-type well component disposed within the first semiconductor layer and the substrate, the p-type well component connected to the second n+ region.
摘要:
Semiconductor structures and methods of manufacture are disclosed herein. Specifically, disclosed herein are methods of manufacturing a high-voltage metal-oxide-semiconductor field-effect transistor and respective structures. A method includes forming a field-effect transistor (FET) on a substrate in a FET region, forming a high-voltage FET (HVFET) on a dielectric stack over a over lightly-doped diffusion (LDD) drain in a HVFET region, and forming an NPN on the substrate in an NPN region.
摘要:
A BiCMOS device structure, method of manufacturing the same and design structure thereof are provided. The BiCMOS device structure includes a substrate having a layer of semiconductor material upon an insulating layer. The BiCMOS device structure further includes a bipolar junction transistor structure formed in a first region of the substrate having an extrinsic base layer formed at least partially from a portion of the layer of semiconductor material.
摘要:
Schottky barrier diodes, methods for fabricating Schottky barrier diodes, and design structures for a Schottky barrier diode. A guard ring for a Schottky barrier diode is formed with a selective epitaxial growth process. The guard ring for the Schottky barrier diode and an extrinsic base of a vertical bipolar junction diode on a different device region than the Schottky barrier diode may be concurrently formed using the same selective epitaxial growth process.
摘要:
Schottky barrier diodes, methods for fabricating Schottky barrier diodes, and design structures for a Schottky barrier diode. A guard ring for a Schottky barrier diode is formed with a selective epitaxial growth process. The guard ring for the Schottky barrier diode and an extrinsic base of a vertical bipolar junction diode on a different device region than the Schottky barrier diode may be concurrently formed using the same selective epitaxial growth process.
摘要:
A heterojunction bipolar transistor (HBT) may include an n-type doped crystalline collector formed in an upper portion of a crystalline silicon substrate layer; a p-type doped crystalline p+Si1-xGex layer, formed above the n-type doped collector, that forms a p-type doped internal base of the HBT; a crystalline silicon cap formed on the p-type doped crystalline p+Si1-xGex layer, in which the crystalline silicon cap includes an n-type impurity and forms an n-type doped emitter of the HBT; and an n-type doped crystalline silicon emitter stack formed within an opening through an insulating layer to an upper surface of the crystalline silicon cap.
摘要:
Lateral PNP bipolar junction transistors, methods for fabricating lateral PNP bipolar junction transistors, and design structures for a lateral PNP bipolar junction transistor. An emitter and a collector of the lateral PNP bipolar junction transistor are comprised of p-type semiconductor material that is formed by a selective epitaxial growth process. The source and drain each directly contact a top surface of a device region used to form the emitter and collector. A base contact may be formed on the top surface and overlies an n-type base defined within the device region. The emitter is laterally separated from the collector by the base contact. Another base contact may be formed in the device region that is separated from the other base contact by the base.
摘要:
Aspects of the invention provide for a bipolar transistor of a self-aligned emitter. In one embodiment, the invention provides a method of forming local wiring for a bipolar transistor with a self-aligned sacrificial emitter, including: performing an etch to remove the sacrificial emitter to form an emitter opening between two nitride spacers; depositing an in-situ doped emitter into the emitter opening; performing a recess etch to partially remove a portion of the in-situ doped emitter; depositing a silicon dioxide layer over the recessed in-situ doped emitter; planarizing the silicon dioxide layer via chemical mechanical polishing; etching an emitter trench over the recessed in-situ doped emitter; and depositing tungsten and forming a tungsten wiring within the emitter trench via chemical mechanical polishing.
摘要:
Disclosed is a transistor structure, having a completely silicided extrinsic base for reduced base resistance Rb. Specifically, a metal silicide layer covers the extrinsic base, including the portion of the extrinsic base that extends below the upper portion of a T-shaped emitter. One exemplary technique for ensuring that the metal silicide layer covers this portion of the extrinsic base requires tapering the upper portion of the emitter. Such tapering allows a sacrificial layer below the upper portion of the emitter to be completely removed during processing, thereby exposing the extrinsic base below and allowing the metal layer required for silicidation to be deposited thereon. This metal layer can be deposited, for example, using a high pressure sputtering technique to ensure that all exposed surfaces of the extrinsic base, even those below the upper portion of the emitter, are covered.