摘要:
A process for the preparation of n-butyraldehyde and/or n-butanol, wherein a) 1,3-butadiene is caused to react with an alcohol of the formula I ROH I, to form a mixture of adducts of the formulas II ##STR1## and III ##STR2## b) the adduct III is isomerized to the adduct II, c) the adduct II is isomerized in the presence of a homogeneous or heterogeneous transition metal element catalyst to form the enol ether of the formula IV ##STR3## and d) n-butyraldehyde and/or n-butanol is/are produced from this ether IV by the reaction thereof with hydrogen and water or water only in the presence of a homogeneous or heterogeneous catalyst.
摘要:
Process for the preparation of polyalkylenepolyamines by homogeneously catalyzed alcohol amination, in which aliphatic amino alcohols are reacted with one another or aliphatic diamines or polyamines are reacted with aliphatic diols or polyols with the elimination of water in the presence of a homogeneous catalyst and in the presence of hydrogen gas. Polyalkylenepolyamines obtainable by such processes and polyalkylenepolyamines comprising hydroxy groups, secondary amines or tertiary amines. Uses of such polyalkylenepolyamines as adhesion promoters for printing inks, adhesion promoters in composite films, cohesion promoters for adhesives, crosslinkers/curing agents for resins, primers for paints, wet-adhesion promoters for emulsion paints, complexing agents and flocculating agents, penetration assistants in wood preservation, corrosion inhibitors, immobilizing agents for proteins and enzymes.
摘要:
A process for preparing formic acid by hydrogenation of carbon dioxide in the presence of a tertiary amine (I), a diamine (II), a polar solvent and a catalyst comprising gold at a pressure of from 0.2 to 30 MPa abs and a temperature of from 0 to 200° C., wherein the catalyst is a heterogeneous catalyst comprising gold.
摘要:
Process for preparing formic acid by hydrogenation of carbon dioxide in the presence of a catalyst comprising an element of group 8, 9 or 10 of the Periodic Table, a tertiary amine and a polar solvent at a pressure of from 0.2 to 30 MPa abs and a temperature of from 20 to 200° C. to form two liquid phases, separation of the two liquid phases, wherein the liquid phase (B) enriched with the tertiary amine is recirculated to the hydrogenation reactor and the formic acid/amine adduct from the liquid phase (A) enriched with the formic acid/amine adduct and the polar solvent is thermally dissociated into free formic acid and free tertiary amine in a distillation unit and the tertiary amine liberated in the dissociation and the polar solvent are recirculated to the hydrogenation reactor.
摘要:
The present invention relates to a particularly economic overall method for producing menthol, specifically for producing optically active, essentially enantiomerically and diastereomerically pure L-menthol and racemic menthol, starting from the starting material citral which is available inexpensively on an industrial scale. The method comprises the following stepsa) catalytic hydrogenation of neral and/or geranial to give citronellal,b) cyclization of citronellal to isopulegol in the presence of an acidic catalyst,c) purification of isopulegol by crystallization andd) catalytic hydrogenation of isopulegol to give menthol.
摘要:
The present invention relates to a process for asymmetric synthesis in the presence of a chiral catalyst comprising at least one complex of a metal of transition group VIII with ligands capable of dimerization via noncovalent bonds, such catalysts and their use.
摘要:
The invention relates to a method for producing optically active 3-aminocarboxylic acid ester compounds. According to said method, an enantiomer mixture of a mono-N-acylated 3-aminocarboxylic acid ester, which mixture was previously enriched in an enantiomer, is subjected to deacylation and then to a further enantiomer enrichment by crystallization by adding an acidic salt-forming substance.
摘要:
Process for preparing tricyclodecanedialdehyde by hydroformylation of dicyclopentadiene by means of a CO/H2 mixture at elevated temperature and under superatmospheric pressure in the presence of a rhodium catalyst which has not been modified by means of a ligand and is homogeneously dissolved in the hydroformylation medium, wherein the hydroformylation is carried out at a pressure of from 200 to 350 bar in at least two reaction zones, with a reaction temperature of from 80 to 120° C. being set in a first reaction zone and a reaction temperature of from 120 to 150° C. being set in a reaction zone following this reaction zone, with the proviso that the reaction temperature in the subsequent reaction zone is at least 5° C. higher than in the preceding reaction zone.
摘要:
The catalyst comprises at least one bi- or more highly dentate phosphonite ligand of the general formula I or salts and mixtures thereof and is useful in a process for hydroformylating compounds containing at least one ethylenically unsaturated double bond by reaction with carbon monoxide and hydrogen.
摘要:
A process for the preparation of phosphabenzene compounds of the formulae I and II where R1 to R6, independently of one another, are hydrogen, COOM SO3M, NR3X, NR2, OR, COOR or SR, where M is hydrogen, NH4 or an alkali metal, X is an anion, R is hydrogen, C1-6-alkyl, or C1-12-alkyl, C6-12-aryl, C7-12-aralkyl or C3-6-heterocycloalkyl having 1 to 3 heteroatoms which may be substituted by the above radicals or linked to form fused rings, and —W— is a bridge comprising a covalent bond, an oxo group, a sulfur group, an amino group, a di-C1-6-alkylsilicon group or a C1-16-radial, which may be part of one or more linked cyclic or aromatic rings and may be interrupted by 1 to 3 heteroatoms, where the phosphabenzene ring o- or m-position not bonded to the bridge may carry one of the radicals R1 to R6, with the exception of bis-3,3′-(2,4,6-triphenyl-3-phosphabenzene)-1,1-biphenyl, by reacting corresponding pyrilium salts with PH3 in the presence of a catalytic amount of acid and in the presence or absence of a solvent or diluent, where the pyrilium salts are mixed with PH3 at above 0° C. and reacted at from 0° C. to 200° C. and at a pressure greater than 1 bar.