摘要:
A technology for a semiconductor integrated circuitry allows each of the DRAM memory cells to be divided finely so as to be more highly integrated and operate faster. In a method of manufacturing such a semiconductor integrated circuit, at first, gate electrodes 7 are formed via a gate insulating film 6 on the main surface of a semiconductor substrate 1, and on side surfaces of each of the gate electrodes there is formed a first side wall spacer 14 composed of silicon nitride and a second side wall spacer 15 composed of silicon oxide. Then, in the selecting MISFET Qs in the DRAM memory cell area there are opened connecting holes 19 and 21 in a self-matching manner with respect to the first side wall spacers 14 and connecting portion is formed connecting a conductor 20 to a bit line BL. In addition, in the N channel MISFETs Qn1 and Qn2, and in the P channel MISFET Qp1 in areas other than the DRAM memory cell area, high density N-type semiconductor areas 16 and 16b are formed, as well as a high density P-type semiconductor area 17 is formed in a self-matching manner with respect to the second side wall spacers 15.
摘要:
In a DRAM having information storage capacitative elements over their corresponding bit lines BL, wiring grooves are defined in an insulating film for wire or interconnection formation, which are formed over a gage electrode serving as word lines of the DRAM. Sidewall spacers are formed on their corresponding side walls of the wiring grooves. Each bit line BL and a first layer interconnection composed of a tungsten film are formed so as to be embedded in the wiring grooves whose intervals are respectively narrowed by the sidewall spacers. The bit lines BL are respectively connected to a semiconductor substrate through connecting plugs. The bit lines BL and the connecting plugs are respectively connected to one another at the bottoms of the wiring grooves.
摘要:
It is an object of the present invention to provide a technology of a semiconductor integrated circuitry that allows each of the DRAM memory cells to be divided finely so as to be more highly integrated and operated faster. In a method for manufacturing such a semiconductor integrated circuitry of the present invention, at first, gate electrodes 7 are formed via a gate insulating film 6 on the main surface of a semiconductor substrate 1, and on side surfaces of each of the gate electrodes is formed the first side wall spacer 14 composed of silicon nitride and the second side wall spacer 15 composed of silicon oxide. Then, in the selecting MISFET Qs in the DRAM memory cell area are opened connecting holes 19 and 21 in a self-matching manner with respect to the first side wall spacers 14 and are formed connecting portion connecting a conductor 20 to a bit line BL. In addition, in the N channel MISFETs Qn1 and Qn2, and in the P channel MISFET Qp1 in areas other than the DRAM memory cell area are formed high density N-type semiconductor areas 16 and 16b, as well as a high density P-type semiconductor area 17 in a self-matching manner with respect to the second side wall spacers 15.
摘要:
A nonvolatile storage element of single-layer gate structure constructed by arranging a floating gate formed of a conductive layer to partly overlap with a control gate formed of a diffused layer is provided with a barrier layer covering a part or the whole of the surface of the floating gate. Such nonvolatile storage elements are used for redundancy control of defects or change of functions.
摘要:
Disclosed is a semiconductor integrated circuit device which includes first field effect transistors of an LDD structure having a floating gate as memory cells and second field effect transistors of the LDD structure as elements other than the memory cells, and which is used as EPROM. A shallow, low impurity concentration region of the first field effect transistor as a part of its source or drain region has a higher impurity concentration than a shallow, low impurity concentration region of the second field effect transistor as a part of its source or drain region.
摘要:
In a semiconductor integrated circuit device having a dynamic type memory element (DRAM), a non-volatile memory element of FLOTOX structure and a MISFET, a dielectric film of an information storing capacitance element fo the DRAM and a tunnel insulation film of the non-volatile memory element are constituted in film thickness less than that of a gate insulation film of the MISFET. Thin dielectric film increases the charge storage quantity of the information storing capacitance element and decreases the occupation area of the DRAM. Thin tunnel insulation film increases the tunnel current quantity and decreases the information write time of the non-volatile memory element. Process of forming the dielectirc film and process of forming the tunnel insulation film are performed in the same process, thereby the manufacaturing process of the semiconductor integrated circuit device is reduced.
摘要:
A semiconductor integrated circuit device is provided which includes first field effect transistors of an LDD structure having a floating gate as memory cells and second field effect transistors of the LDD structure as elements other than the memory cells. A shallow, low impurity concentration region of the first field effect transistor which is a part of its source or drain region has a higher impurity concentration than a shallow, low impurity concentration region of the second field effect transistor which is a part of its source or drain region. The device is particularly useful in an EPROM arrangement.
摘要:
Compositions of apatite derivative crystals are disclosed herein. Also disclosed are methods of using these compositions to treat tooth sensitivity, to use as an anticaries treatment, to use as a restorative material, to use as a tooth surface whitener, and to combat or lessen the side effects of tooth whitening.
摘要:
There is provided a technique for improving the flatness at the surface of members embedded in a plurality of recesses without resulting in an increase in the time required for the manufacturing processes. According to this technique, the dummy patterns can be placed up to the area near the boundary BL between the element forming region DA and dummy region FA by placing the first dummy pattern DP1 of relatively wider area and the second dummy pattern DP2 of relatively small area in the dummy region FA. Thereby, the flatness of the surface of the silicon oxide film embedded within the isolation groove can be improved over the entire part of the dummy region FA. Moreover, an increase of the mask data can be controlled when the first dummy patterns DP1 occupy a relatively wide region among the dummy region FA.
摘要:
A nonvolatile storage element of a single-layer gate type structure is arranged so that a floating gate is formed of a conductive layer which partly overlaps with a control gate, formed of a diffused layer, and is provided with a barrier layer covering a part of or the whole surface of the floating gate. Nonvolatile storage elements characterized as such are used for redundancy control of defects or change of functions.