Abstract:
A device such as a liquid crystal display is provide, in which every pixel can sufficiently realize writing of a video signal into a storage capacitor. The liquid crystal display device of the present invention includes left and right gate drivers. The left gate driver is connected to supply selection signals to TFTs of pixels of a left half of a pixel portion. The right gate driver is connected to supply selection signals to TFTs of pixels of a right half of the pixel portion. In the liquid crystal display device of the present invention, timing when the left gate driver outputs a selection signal to a gate signal line connected to a pixel of a column is different from timing when the right gate driver outputs a selection signal to a gate signal line connected to a pixel of the same row as the pixel.
Abstract:
This invention provides a semiconductor device having high operation performance and high reliability. An LDD region 707 overlapping with a gate wiring is arranged in an n-channel TFT 802 forming a driving circuit, and a TFT structure highly resistant to hot carrier injection is achieved. LDD regions 717, 718, 719 and 720 not overlapping with a gate wiring are arranged in an n-channel TFT 804 forming a pixel unit. As a result, a TFT structure having a small OFF current value is achieved. In this instance, an element belonging to the Group 15 of the Periodic Table exists in a higher concentration in the LDD region 707 than in the LDD regions 717, 718, 719 and 720.
Abstract:
This invention provides a semiconductor device having high operation performance and high reliability. An LDD region 707 overlapping with a gate wiring is arranged in an n-channel TFT 802 forming a driving circuit, and a TFT structure highly resistant to hot carrier injection is achieved. LDD regions 717, 718, 719 and 720 not overlapping with a gate wiring are arranged in an n-channel TFT 804 forming a pixel unit. As a result, a TFT structure having a small OFF current value is achieved. In this instance, an element belonging to the Group 15 of the Periodic Table exists in a higher concentration in the LDD region 707 than in the LDD regions 717, 718, 719 and 720.
Abstract:
A shooting instruction device 1 selects one of preset shooting patterns 101 according to the type and scale of the disaster to cope with, then inputs shooting conditions 112 corresponding to the selected shooting pattern, and sends a shooting instruction 103. A video camera apparatus 2 loaded on a helicopter 3 makes a flight plan 106 based on the received shooting instruction 103, then shoots the position of a shooting target, then adds a still picture mark to a video signal 111, and sends it together with associated data 114. An information display device 4 extracts a still picture from a video signal 113 with the still picture mark, and displays the still picture together with the associated data 114.
Abstract:
The present invention relates to a liquid crystal element wherein a liquid crystal having a liquid crystal molecule is held between two substrates. An information for aligning a liquid crystal molecule 103 in two or more directions phasedly or gradually by applying voltage is provided for two substrates 101 and 102. The information for aligning is provided for the liquid crystal molecule 103 through irregularities in a wave plate and rubbing formed on a substrate.
Abstract:
A D/A converter circuit capable of handling a high bit number digital signal, having good linearity, and having a small occupied surface area is provided. The D/A converter circuit has n−m+1 capacitors (where m is a natural number, and smaller than n), and the supply and discharge of electric charge to one of the capacitors from among the n−m+1 capacitors are controlled by the lower m bits of a digital video signal. The supply and discharge of electric charge to the remaining n−m capacitors, from among the n−m+1 capacitors, are controlled by the upper n−m bits, from among the n bits, of the digital video signal.
Abstract:
This invention provides a semiconductor device having high operation performance and high reliability. An LDD region 707 overlapping with a gate wiring is arranged in an n-channel TFT 802 forming a driving circuit, and a TFT structure highly resistant to hot carrier injection is achieved. LDD regions 717, 718, 719 and 720 not overlapping with a gate wiring are arranged in an n-channel TFT 804 forming a pixel unit. As a result, a TFT structure having a small OFF current value is achieved. In this instance, an element belonging to the Group 15 of the Periodic Table exists in a higher concentration in the LDD region 707 than in the LDD regions 717, 718, 719 and 720.
Abstract:
In a pixel structure of an active matrix display device, aperture ratio and a sufficient storage capacitor are secured. A light shielding film provided under an active layer of a pixel TFT and the pixel TFT, the active layer of the pixel TFT, and a thinned gate insulating film are used to form a gate wiring and a capacitor.
Abstract:
There is provided a driving circuit which is simple and has a small occupied area. A shift register circuit of the present invention includes a plurality of register circuits. Each of the register circuits includes a clocked inverter circuit and an inverter circuit. Both are connected in series with each other so that an output signal of the clocked inverter circuit becomes an input signal of the inverter circuit. Further, the register circuit includes a signal line by which an output signal of the inverter circuit is transmitted. Since a number of elements are connected to the signal line and parasitic capacitance is large, it has a high load. The shift register circuit of the present invention uses the fact that since the parasitic capacitance of the signal line is large, it has a high load.
Abstract:
There is provided an active matrix type semiconductor display device which realizes low power consumption and high reliability. In the active matrix type semiconductor display device of the present invention, a counter electrode is divided into two, different potentials are applied to the two counter electrodes, respectively and inversion driving is carried out each other. Since a potential of an image signal can be made low by doing so, it is possible to lower a voltage necessary for operation of a driver circuit. As a result, it is possible to realize improvement of reliability of an element such as a TFT and reduction of consumed electric power. Moreover, since it is possible to lower a voltage of a timing pulse supplied by the driver circuit, a booster circuit can be omitted, and reduction of an area of the driver circuit can be realized.