Abstract:
Systems and methods are disclosed by which patterns of various materials can be formed on flexible substrates by a continuous roll-to-roll manufacturing process. The patterns may include metallic, transparent conductive, or non-metallic elements with lateral dimensions including in the range from below 100 nanometers to millimeters and with thickness dimensions including the range from tens of Angstroms to greater than 10,000 Angstroms. The substrate may be any material capable of sufficient flexibility for compatibility with roll-based processing equipment, including polymeric films, metallic foils, and thin glass, with polymeric films representing a particularly broad field of application. Methods may include the continuous roll-to-roll formation of a temporary polymeric structure with selected areas open to the underlying substrate, the continuous addition or subtraction of constituent materials, and the continuous removal, where necessary, of the polymeric structure and any excess material.
Abstract:
Systems and methods are disclosed for providing working substrates for the deposition of various photonic and electronic devices, in particular for organic light emitting diodes (OLEDs) used for lighting and displays, where these substrates incorporate structural elements that improve the performance of these devices. These elements include nanoscale and microscale relief (3D) patterns on one or both sides of the substrate that are beneficial in controlling light and electrical properties of these devices by, for example, improving light output efficiency and uniformity. The present disclosure describes batch and roll-to-roll (R2R) techniques that allow these performance enhancing substrates to be efficiently formed, and at a much lower cost than can be achieved using prior art. Although one particular application relates to OLED lighting, such substrates can be used to enhance the performance of other devices, including flexible displays, touch screens, energy harvesting cells, sensors, and the like.
Abstract:
Systems, methods, and apparatus are disclosed for making patterning tools from one or more discrete elements. Such tools can have one or more “seams” or joints where the individual elements abut which can limit the tools' performance and utility in roll-to-roll manufacturing. Methods are described herein for producing “near-seamless” tools, that is, tools having seams that exhibit minimum disruption of the tool pattern and thus improved material produced by such tools. The patterning tools can be cylindrical and/or closed in shape.
Abstract:
Techniques, methods, systems, and apparatus are disclosed that are useful for creating addressable three-dimensional elements formed on a flexible substrate using continuous roll-to-roll fabrication methods. An array of conductive elements can be formed on a first flexible substrate layer, over which is disposed a second polymer layer containing a three-dimensional micro-scale relief pattern. The second layer can be formed in registration with the underlying electrode pattern. The lowest areas of the micropattern can be etched away, in order to expose the underlying electrode elements. The 3D micropattern can include a volumetric structure capable of being filled with various materials, where the contents of the 3D structure may be further processed by chemical, electrochemical, or physical treatment. The 3D structure may consist of elements in the general form of microvessels disposed in a periodic or non-periodic array.
Abstract:
Durable replication tools are disclosed for replication of relief patterns in desired media, for example in optical recording or data storage media. Methods of making such durable replication tools are disclosed, including recording and developing a relief pattern on a selected surface of a support cylinder, creating a durable layer with a complementary relief replica of the pattern, separating the durable layer from the support cylinder. Apparatus are disclosed for fabricating such replication tools, including systems and apparatus for recording a desired relief pattern on a surface of a support cylinder. Also disclosed are electro deposition cells for forming a durable tool sleeve having a desired relief pattern. The replication tool relief features may have critical dimensions down to the micron and nanometer regime.
Abstract:
Systems and methods are disclosed by which patterns of various materials can be formed on flexible substrates by a continuous roll-to-roll manufacturing process. The patterns may include metallic, transparent conductive, or non-metallic elements with lateral dimensions including in the range from below 100 nanometers to millimeters and with thickness dimensions including the range from tens of Angstroms to greater than 10,000 Angstroms. The substrate may be any material capable of sufficient flexibility for compatibility with roll-based processing equipment, including polymeric films, metallic foils, and thin glass, with polymeric films representing a particularly broad field of application. Methods may include the continuous roll-to-roll formation of a temporary polymeric structure with selected areas open to the underlying substrate, the continuous addition or subtraction of constituent materials, and the continuous removal, where necessary, of the polymeric structure and any excess material.
Abstract:
Systems, methods, and structures for improving the performance of thin-film electronic devices, in particular organic LEDs (OLEDs) used in lighting, are disclosed. Enhanced substrates, upon which OLED devices may be deposited, incorporate various structures for extracting light trapped in the device stack and substrate. The substrates provide an improved transparent electrode layer. Methods for forming planarized buried extraction structures to reduce disruption to the deposited device stack layers are disclosed, as are methods for providing smooth, planarized buried metal mesh conductors.
Abstract:
Porous filters having uniform pore size and close packing density are described, along with methods and apparatus for making the porous filters based on nanopatterning. One method includes applying a polymeric liquid to a mold consisting of an array of posts having a desired pore size and distribution. Solidification of polymeric membrane followed by separation from the mold produces a polymer membrane with a predetermined spaced array of pores. A pre-filter film can also be bonded with the membrane during formation to provide increased mechanical support and filtration of larger particles on the input side of the filter. Other process variants are described, including methods for incorporating additional functionalities to the filter.
Abstract:
Methods, apparatus and systems are disclosed by which patterned layers can be formed in a roll-to-roll process using a variable and programmable means for applying liquids and solutions used in the patterning process.
Abstract:
Means, apparatus, systems, and/or methods are described for forming improved rigid or flexible semi-transparent imprinting templates. These templates can be used to produce patterning masks having improved resolution that do not require plasma etching for residue removal. The methods and apparatus are compatible with roll-to-roll manufacturing processes and enable roll-to-roll formation of a wide range of metal patterned films.