Abstract:
Systems and methods are provided for classifying microbial cells according to morphological features of microcolonies. A dark-field objective is employed to acquire a dark-field image of a microcolony during a microcolony growth phase that is characterized by phenotypic expression of microcolony morphological features which evolve with time and are differentiated among classes of microbial cell types. The dark-field image is processed to classify the microcolony according to two or more microbial cell types, such as Gram status and/or speciation. The dark-field objective may have a numerical aperture selected to facilitate the imaging of microcolony morphological features, residing, for example, between 0.15 and 0.35. A set of dark-field images of a microcolony may be collected during the microcolony growth phase and processed to classify the microcolony. Classification may be performed according to a temporal ordering of the dark-field images, for example, using a recurrent neural network.
Abstract:
Methods are provided for the stabilization and separation of nucleic acids from a sample via contact of the sample with a lysis and stabilization reagent that includes a cationic detergent. The cationic detergent lyses cells in the sample and stabilizes the released nucleic acids via the formation of nucleic acid-surfactant (NAS) complexes. The NAS complexes are centrifugally precipitated, washed, the resuspended in an aqueous resuspension liquid, forming a NAS complex suspension. The suspension is thermally processed to disintegrate the NAS complexes, thereby releasing the nucleic acids and forming a nucleic acid solution. In some example embodiments, the aqueous resuspension liquid is selected to be suitable for performing molecular amplification assays, such that the nucleic acid solution may be employed for performing a molecular amplification assay in the absence of further nucleic acid extraction. Examples are provided whereby the present methods are adapted for performing transcriptomic biomarker assays.
Abstract:
Systems, methods and devices are provided for the automated centrifugal processing of samples. In some embodiments, an integrated fluidic processing cartridge is provided, in which a centrifugation chamber is fluidically interfaced, through a lateral surface thereof, with a microfluidic device, and wherein the integrated fluidic processing cartridge is configured to be inserted into a centrifuge for centrifugation. A cartridge interfacing assembly may be employed to interface with the integrated fluidic processing cartridge for performing various fluidic processing steps, such as controlling the flow of fluids into and out of the centrifugation chamber, and controlling the flow of fluids into the microfluidic device, and optionally for the further fluidic processing of fluids extracted to the microfluidic device. The integrated fluidic processing cartridge may include a supernatant chamber the extraction of a supernatant thereto, and a diluent chamber for diluting a suspension collected in the centrifugation chamber.
Abstract:
Devices and methods are provided for electrically lysing cells and releasing macromolecules from the cells. A microfluidic device is provided that includes a planar channel having a thickness on a submillimeter scale, and including electrodes on its upper and lower inner surfaces. After filling the channel with a liquid, such that the channel contains cells within the liquid, a series of voltage pulses of alternating polarity are applied between the channel electrodes, where the amplitude of the voltage pulses and a pulsewidth of the voltage pulses are effective for causing irreversible electroporation of the cells. The channel is configured to possess thermal properties such that the application of the voltage produces a rapid temperature rise as a result of Joule heating for releasing the macromolecules from the electroplated cells. The channel may also include an internal filter for capturing and concentrating the cells prior to electrical processing.
Abstract:
The present invention provides a microfluidic devices and methods of use thereof for the concentration and capture of cells. A pulsed non-Faradic electric field is applied relative to a sample under laminar flow, which results to the concentration and capture of charged analyte. Advantageously, pulse timing is selected to avoid problems associated with ionic screening within the channel. At least one of the electrodes within the channel is coated with an insulating layer to prevent a Faradic current from flowing in the channel. Under pulsed application of a unipolar voltage to the electrodes, charged analyte within the sample is moved towards one of the electrodes via a transient electrophoretic force.