Abstract:
Hybrid materials are disclosed including molecular/protein crystals integrated with synthetic polymers. The disclosed materials combine the structural order and periodicity of crystals, the adaptiveness and tunable mechanical properties of polymeric networks, and the chemical versatility of protein building blocks. Some of the properties of the disclosed materials include the following: 1) allows crystals—which are typically rigid and brittle—to expand and contract reversibly; 2) incorporates polymers to increase the mechanical toughness of the crystals and allow self-healing; 3) reversibly expand/contract crystal lattices and mobilize the protein components therein may provide a new means to improve X-ray diffraction quality and explore otherwise inaccessible protein structural states using 3D protein crystallography; 4) creation of chemically and mechanically differentiated domains within single crystals. Some example embodiments combine the properties of hydrogels (flexibility, adaptability, elasticity, self-healing), crystals (structural order) and proteins (chemical and genetic tailorability).
Abstract:
The invention provides for a method of regenerating a solid adsorbent, such as a molecular sieve or activated carbon, using stable fluorinated hydrocarbon compounds such as, for example, HFC-245cb (1,1,1,2,2-pentafluoropropane, as a regeneration fluid.
Abstract:
Provided is a tritium adsorbent. Use of hydrogen- or lithium-containing manganese oxide having a spinel crystal structure as a tritium adsorbent to trap tritium from tritium-containing water makes it possible to inexpensively separate tritium from water.
Abstract:
A method of increasing an amount of zeolite contained in a zeolite-containing material, where the method includes the steps of: providing a sample of a zeolite-containing material having at least one rare earth element therein; increasing the amount of zeolite in the sample of the zeolite-containing material by reacting the sample of the zeolite-containing material with an extracting agent that extracts at least a portion of the at least one rare earth element from the sample of the zeolite-containing material; separating the reacted sample, from which has been extracted at least some of the at least one rare earth element previously associated therewith, from the extracting agent; and obtaining the reacted sample in which the amount of zeolite in the reacted sample has been increased.
Abstract:
Process, apparatus and article for treating an aqueous solution containing biological contaminants. The process includes contacting an aqueous solution containing a biological contaminant with an aggregate composition comprising an insoluble rare earth-containing compound to form a solution depleted of active biological contaminants. The aggregate includes more than 10.01% by weight of the insoluble rare earth-containing compound. The insoluble rare earth-containing compound can include one or more of cerium, lanthanum, or praseodymium. A suitable insoluble cerium-containing compound can be derived from a cerium carbonate, a cerium oxalate or a cerium salt. The composition can consist essentially of cerium oxides, and optionally, a binder and/or flow aid. The aggregate includes no more than two elements selected from the group consisting of yttrium, scandium, and europium when the aggregate is to be sintered. Although intended for a variety of fluid treatment applications, such applications specifically include removing or deactivating biological contaminants in water.
Abstract:
A process for purification of a liquid lipid from a bed of a particulate absorbent, where a supercritical fluid is passed through said bed to release lipids retained on the absorbent. Also apparatus for use in the performance of the process, lipids purified using the process and by-products of the process. The process enables enhanced removal of retained lipids from the particulate absorbent, e.g. removal of plant oils from bleaching clays.
Abstract:
Methods and apparatus relate to removing selenium from a fluid. The fluid includes non-selenium constituents that are insoluble at a pH in which the fluid is passed through a sorbent bed in order to remove the selenium. Fouling of the sorbent bed can thereby result due to accumulation of the non-selenium constituents, which are precipitated solid materials. Intermittent washing of the sorbent bed with a heated and alkaline wash dissolves and removes the non-selenium constituents to maintain efficient operation and sustain selenium removal performance.
Abstract:
Apparatus, process and article for treating an aqueous solution containing a chemical contaminant. The process includes contacting an aqueous solution containing a chemical contaminant with an aggregate composition comprising an insoluble rare earth-containing compound to form a solution depleted of chemical contaminants. The insoluble rare earth-containing compound can include one or more of cerium, lanthanum, or praseodymium. A suitable insoluble cerium-containing compound can be derived from a cerium carbonate, cerium oxalate and/or a cerium salt. The aggregate composition can include more than 10.01% by weight of the insoluble rare earth-containing compound, and in a particular embodiment consists essentially of one or more cerium oxides, and optionally a binder and/or flow aid. Although intended for a variety of fluid treatment applications, such applications specifically include removing or detoxifying chemical contaminants in water.
Abstract:
Disclosed herein are methods for treating amyloid disease in humans by clearing amyloid peptides from one or more bodily fluids such as, e.g. blood, of a patient. In particular, the methods are based on the administration of compounds capable of binding to amyloid-beta (Aβ) or on dialysis of blood or plasma exchange in order to remove Aβ peptides from the blood circulation, and/or brain or other affected organs.